RECOVERING BOUNDARY SHAPE AND CONDUCTIVITY IN ELECTRICAL IMPEDANCE TOMOGRAPHY

VILLE KOLEHMAINEN
University of Eastern Finland
Department of Applied Physics
P.O.Box 1627, 70211 Kuopio, Finland

MATTI LASSAS, PETRI OLA AND SAMULI SILTANEN
University of Helsinki
Department of Mathematics and Statistics
P.O.Box 68, 00014 University of Helsinki, Finland

(Communicated by the associate editor name)

Abstract. Electrical impedance tomography (EIT) aims to reconstruct the electric conductivity inside a physical body from current-to-voltage measurements at the boundary of the body. In practical EIT one often lacks exact knowledge of the domain boundary, and inaccurate modeling of the boundary causes artifacts in the reconstructions. A novel method is presented for recovering the boundary shape and an isotropic conductivity from EIT data. The first step is to determine the minimally anisotropic conductivity in a model domain reproducing the measured EIT data. Second, a Beltrami equation is solved, providing shape-deforming reconstruction. The algorithm is applied to simulated noisy data from a realistic electrode model, demonstrating that approximate recovery of the boundary shape and conductivity is feasible.

1. Introduction. In electrical impedance tomography (EIT), the electric conductivity inside a physical body is reconstructed from electric current and voltage measurements at the boundary of the body. EIT has applications in medical imaging, nondestructive testing, geophysical prospection and industrial process monitoring.

The shape of the boundary of the body is usually assumed to be known. However, that assumption is not always practical. For instance, consider monitoring heart and lung function of an unconscious intensive care patient using EIT [10, 13, 14]. The measurement electrodes are attached around the chest on the skin of the patient. The shape of a cross-section of the chest could in principle be obtained using another imaging modality such as magnetic resonance imaging, but that option involves transportation and scheduling issues. Further, the shape of the thorax varies as the patient changes position.

The use of even slightly incorrect model of the boundary can cause significant errors in EIT reconstructions [17, 12, 1]. Therefore, in applications where boundary
shape is not known it would be ideal to recover the shape from EIT measurement data alone. We introduce in this article a novel three-step method for that purpose, continuing the work reported in [18, 19]. See Figure 1 for a demonstration.

In the two-dimensional (2D) case, the EIT problem is formulated as follows: Let \( \Omega \subset \mathbb{R}^2 \) be a bounded and sufficiently smooth domain representing the measurement domain, and let \( \gamma = [\gamma_{ij}(x)]_{i,j=1}^2 \) be a matrix modeling electrical conductivity in \( \Omega \). We assume that \( \gamma \) has components in \( L^\infty(\Omega) \) and is strictly positive definite, that is, for some constant \( C > 0 \) we have
\[
C^{-1}||\xi||^2 \leq \xi \cdot \gamma(x)\xi \leq C||\xi||^2, \quad \text{for } \xi \in \mathbb{R}^2, \text{a.e. } x \in \Omega. \tag{1.1}
\]
The conductivity \( \gamma \) is called \textit{isotropic} if it has the form of a scalar valued function times identity matrix; otherwise it is called \textit{anisotropic}. In this work we discuss the reconstruction of isotropic conductivities, but intermediate steps in our method involve anisotropic conductivities as well.

Let \( u \) denote the electric potential in \( \Omega \), where we assume that \( u \) belongs to Sobolev space \( H^1(\Omega) \). The potential satisfies the conductivity equation
\[
\nabla \cdot \gamma \nabla u = 0 \quad \text{in } \Omega. \tag{1.2}
\]
and the Robin boundary condition
\[
(z \nu \cdot \gamma \nabla u + u)|_{\partial \Omega} = h.
\]
The function \( z \) is called \textit{contact impedance} and models voltage drops caused by electrochemical effects at the electrode-skin interface. Measurements are modelled by the Robin-to-Neumann map \( R = R_{z,\gamma} \) given by
\[
R : h \mapsto \nu \cdot \gamma \nabla u|_{\partial \Omega}
\]
that maps the potential on the boundary to the current across the boundary.

The EIT problem considered in this article is to reconstruct an isotropic conductivity \( \gamma \) inside \( \Omega \) using values \( R_{z,\gamma}g \) for all \( g \in H^{-1/2}(\Omega) \). It is shown in [20] that \( R \) determines the map \( z \), and hence the knowledge of \( R \) is equivalent to the knowledge of the Dirichlet-to-Neumann map much studied in EIT literature.

The EIT problem was formulated mathematically by Calderón [9]. For fundamental results on the unique solvability of the EIT problem in the plane we refer to
works of Nachman [21], Brown-Uhlmann [8] and finally Astala-"Pa"iv"arinta [5] where this problem was settled for general isotropic $L^\infty$-conductivities. Numerical solution of the EIT problem is typically computed, for example, using the regularized least squares framework [10] or the Bayesian inversion framework [15]. For an example on numerical implementation of a direct solution based on the uniqueness proof of Nachman [21], see [24, 13, 16]. A common feature in all those numerical methods is that the boundary of the measurement domain $\Omega$ is assumed to be known.

We consider recovering an unknown isotropic conductivity $\gamma$ in $\Omega$ and an approximation to the unknown shape of $\partial \Omega$ from discrete current-to-voltage measurements performed using $N$ electrodes on the boundary $\partial \Omega$. In practice, the data is a finite matrix that approximates the Robin-to-Neumann map $R$.

The starting point is to choose a model domain, the best available approximation $\Omega_m$ to the actual domain $\Omega$. For example, $\Omega_m$ can a disc having roughly the same area than $\Omega$. We build a computational model for discrete Robin-to-Neumann data from a given (possibly anisotropic) conductivity in $\Omega_m$ measured using $J$ electrodes on $\partial \Omega_m$. Our reconstruction algorithm consists of the following steps:

1. **Recovering minimally anisotropic conductivity.** Compute $\gamma_\epsilon(x)$, the least anisotropic of all conductivities in the model domain $\Omega_m$ producing the same data matrix than was measured on $\partial \Omega$. The function $\eta(x) := \det(\gamma_\epsilon(x))^{1/2}$ gives a distorted image inside $\Omega_m$ of the original isotropic conductivity.

2. **Isotropization.** Determine numerically isothermal coordinates $z \mapsto F_i(z)$ corresponding to $\gamma_\epsilon(x)$. This step gives approximate recovery of the domain deformation and boundary shape.

3. **Shape-deforming reconstruction.** Use the isothermal coordinates to reconstruct the original isotropic conductivity approximately as $\eta(\text{Re}(F_i(z)), \text{Im}(F_i(z)))$.

This paper is organized as follows. In Section 2 we give the details of the theory of shape-deforming reconstruction. Section 3 is devoted to explaining the simulation of discrete and noisy EIT measurements. In Section 4 we explain numerical implementation of the theoretical ideas described in Section 2. Numerical results are reported in Section 5, and finally, reasons behind the good performance of our method are discussed in Section 6.

2. Theory of shape-deforming reconstruction.

2.1. **Recovering minimally anisotropic conductivity.** Quasiconformal maps are the basic tools of our method, so let us recall their basic properties. Let $\Omega, \tilde{\Omega} \subset \mathbb{C}$ be open sets. An orientation-preserving homeomorphism $F : \Omega \to \tilde{\Omega}$ is called $K$-quasiconformal if

$$D(z) \leq K$$

for a.e. $z \in \Omega$, where

$$D(z) = \frac{\overline{|\partial F(z)|} + |\overline{\partial F(z)}|}{|\partial F(z)| - |\overline{\partial F(z)}|} \geq 1.$$

Here, $\partial = \frac{1}{2}(\partial_{x_1} - i \partial_{x_2})$, $\overline{\partial} = \frac{1}{2}(\partial_{x_1} + i \partial_{x_2})$, and $z = x_1 + ix_2$.

There is also a geometric definition of quasiconformal maps. Conformal maps take infinitesimal disks at $z$ to infinitesimal disks at $f(z)$, and the radii get dilated by $|f'(z)|$. More generally, a homeomorphism $f$ is quasiconformal on a domain $\Omega$ if infinitesimal disks at any $z \in \Omega$ get mapped to infinitesimal ellipses at $f(z)$.
The ratio of the larger semiaxis to smaller semiaxis is the dilation $D(z)$ of $f$ at $z$, and taking the supremum over $z \in \Omega$ yields the so-called maximal dilation. This dilation of infinitesimal discs is in fact the reason why isotropic conductivities change to anisotropic ones in push-forwards with quasiconformal maps.

The inaccurately known boundary can be considered as the boundary of the deformed model domain. Such a deformation corresponds to a sufficiently smooth diffeomorphism $F$ that maps the original measurement domain $\Omega$ to another domain $\tilde{\Omega}$. Denote $f = F_{|\partial \Omega}$. Then, if $u$ solves (1.2) with a Robin boundary value $h$, $\tilde{u} = u \circ F^{-1}$ and $\tilde{h}(x) = h(f^{-1}(x))$, it can be shown that $\tilde{u}$ solves the conductivity equation

$$
\nabla \cdot \tilde{\gamma} \nabla \tilde{u} = 0, \quad \text{in } \tilde{\Omega},
$$

where $\tilde{z}(x) = z(f^{-1}(x))\|\tau \cdot \nabla (f^{-1})(x)\|$ with $\tau$ the unit tangent vector of $\partial \tilde{\Omega}$, and $\tilde{\gamma}$ is the conductivity

$$
\tilde{\gamma}(x) := F_\ast \gamma(x) = \frac{F'(y) \gamma(y) (F'(y))^T}{|\det F'(y)|} \bigg|_{y = f^{-1}(x)},
$$

where $F' = DF$ is the Jacobi matrix of map $F$, and $F_\ast \gamma$ is called the push-forward of $\gamma$ by $F$. The boundary measurements transform according to the formula

$$
(\tilde{R}h)(x) = (R(h \circ f))(y) \big|_{y = f^{-1}(x)}.
$$

where $\tilde{R}$ corresponds to conductivity $\tilde{\gamma}$ and contact impedance $\tilde{z}$ in domain $\tilde{\Omega}$. Note that formula (2.2) implies that even if $\gamma$ is isotropic, the transformed conductivity $\tilde{\gamma}$ will in general be anisotropic. It is well known [27, 21] and [4] that the Dirichlet-to-Neumann map, and hence also the Robin-to-Neumann map, does not determine uniquely an anisotropic conductivity.

Our set-up is motivated by the fact that the quadratic form corresponding to the push-forwarded Robin-to-Neumann map $R_m$,

$$
R_m[g, g] = \int_{\partial \Omega_m} g R_m g \, dS = \int_{\partial \tilde{\Omega}} (g \circ f_m) R_\ast (g \circ f_m) \, dS, \quad h \in H^{-1/2}(\partial \Omega_m)
$$

represents the power needed to maintain $g \circ f_m$ on the original boundary $\partial \Omega$. Knowing $R_m$ is equivalent to knowing the corresponding quadratic form.

Let us first consider a conventional approach to solve the EIT inverse problem by minimizing the regularized least squares cost functional

$$
\| R_m - R_{z, \gamma} \|_{L(H^{-1/2}(\partial \Omega_m), H^{-1/2}(\partial \Omega_m))}^2 + \alpha \| \gamma \|_X^2
$$

over isotropic conductivities $\gamma$ in the model domain $\Omega_m$. Here $\| \cdot \|_X$ is some regularization norm, $\alpha > 0$ is a regularization parameter and $L(X, Y)$ denotes the space of linear bounded operator from $X$ to $Y$. Since $R_m$ usually does not correspond to any isotropic conductivity because of the deformation done when going from the original domain $\Omega$ to $\Omega_m$, we obtain an erroneous reconstruction $\gamma$ when solving the minimization problem (2.4). A systematic error in the domain model causes a systematic error to the reconstruction. In particular, local changes of the conductivity often give rise to non-localized changes in the reconstructions due to the above modelling error. Thus the spatial resolution of details of reconstructions are often weak. This is clearly seen in practical measurements, see e.g. [12, 17].

To overcome the above difficulties and to reconstruct a conductivity up to a conformal deformation close to the original conductivity, we first find in $\Omega_m$ an
anisotropic conductivity that is as close as possible to isotropic conductivities, and then use the existence of isothermal coordinates to find a deformation that makes the conductivity isotropic. In particular, in such a construction the obtained deformation is small if the errors in the modeling of the domain are small. To explain how this is done, we first recall (with slightly different notations) the quantitative definition of anisotropy used in [18]:

**Definition 2.1.** Let \( [\gamma^{jk}(x)]_{j,k=1}^2 \) be a matrix-valued conductivity with elements in \( L^\infty(\Omega) \) and let \( \lambda_1(x) \) and \( \lambda_2(x) \), \( \lambda_1(x) \geq \lambda_2(x) \) be the eigenvalues of \( \gamma^{jk}(x) \). We define the maximal anisotropy of a conductivity to be \( A(\gamma) \) given by

\[
A(\gamma) = \sup_{x \in \Omega} A(\gamma, x), \quad \text{where} \quad A(\gamma, x) = \frac{\sqrt{\lambda(x)} - 1}{\sqrt{\lambda(x)} + 1}, \quad \lambda(x) = \frac{\lambda_1(x)}{\lambda_2(x)}.
\]

The function \( A(\gamma, x) \) is the anisotropy of \( \gamma \) at \( x \).

Note that if \( F \) is \( K \)-quasiconformal and \( \gamma \) is an isotropic conductivity, then

\[
A(F, \gamma) = \frac{K - 1}{K + 1}.
\]

Using a classical result of Strebel (see [26], [7]) on the existence of the extremal quasiconformal map, it was observed in [18] that among all anisotropic conductivities in the model domain \( \Omega_m \) with a given Dirichlet-to-Neumann map, or equivalently \( R_m \), there is a unique conductivity \( \gamma_c \) that has the minimal anisotropy \( A(\gamma_c) \) and that this conductivity \( \gamma_c \) is of the form \( \gamma_c = \hat{\gamma}_{\lambda, \theta, \eta} \),

\[
\hat{\gamma}_{\lambda, \theta, \eta}(x) = \eta(x)R_{\theta(x)} \left( \begin{array}{cc} \lambda^{1/2} & 0 \\ 0 & \lambda^{-1/2} \end{array} \right) R^{-1}_{\theta(x)},
\]

where \( \lambda \geq 1 \) is a constant, \( \eta(x) \in \mathbb{R}^+ \) is a real-valued function with the property

\[
\eta(x) = \det(\gamma_c(x))^{1/2}
\]

and \( R_{\theta(x)} \) is a rotation matrix corresponding to angle \( \theta(x) \),

\[
R_{\theta} = \left( \begin{array}{cc} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{array} \right).
\]

Note that for the conductivities \( \hat{\gamma} = \hat{\gamma}_{\lambda, \theta, \eta} \) the anisotropy \( A(\hat{\gamma}, x) \) is constant in \( x \),

\[
A(\hat{\gamma}, x) = \frac{\lambda^{1/2} - 1}{\lambda^{1/2} + 1}.
\]

This is why we call such conductivities \( \hat{\gamma} \) *uniformly anisotropic conductivities*. Moreover, there is a unique map \( F_c : \Omega \rightarrow \Omega_m \) such that \( F_c|_{\partial \Omega} = f_m \) and \( \gamma_c = (F_c)_* \gamma \), and the conductivity \( \gamma_c \) can be used to compute in \( \Omega_m \) a deformed image of the original conductivity \( \gamma \) defined in \( \Omega \), namely, we have

\[
\det(\gamma(x))^{1/2} = \gamma(y), \quad y = F_c^{-1}(x), \quad x \in \Omega_m,
\]

see [18]. Note that \( R_m \) determines \( \gamma_c \), but not the original domain \( \Omega \) or the map \( F_c : \Omega \rightarrow \Omega_m \), the extremal quasiconformal map with boundary value \( f_m \).

Analogously to [18], with given \( R_m \) the conductivity \( \gamma_c \) can be found as the unique solution of the minimization problem

\[
\min_{(\lambda, \theta, \eta) \in S} \lambda,
\]

\[
S = \{(\lambda, \theta, \eta) \in [1, \infty) \times L^\infty(\Omega_m) \times L^\infty(\Omega_m) | R_{\hat{\gamma}(\lambda, \theta, \eta)} = R_m \}.
\]
Note that in implementation of the algorithm for noisy measurement data one can approximate the problem (2.9) with the regularized minimization problem
\[
\min_{(\lambda, \theta, \eta)} \left\| R_i(\lambda, \theta, \eta) - R_m \right\|_{L^2(H^{-1/2}(\partial\Omega_m), H^{-1/2}(\partial\Omega_m))}^2 + \varepsilon_1 f(\lambda) + \varepsilon_2 \|\theta\|_{H^1(\Omega_m)}^2 + \varepsilon_3 \|\eta\|_{H^1(\Omega_m)}^2,
\]
where \( f : [1, \infty) \rightarrow \mathbb{R}_+ \) is a convex function that has its minimum near \( \lambda = 1 \) and \( \lim_{t \to 1} f(t) = \lim_{t \to \infty} f(t) = \infty \) and \( \varepsilon_1, \varepsilon_2, \varepsilon_3 > 0 \) are regularization parameters.

2.2. Isotropization. We extend the minimization algorithm (2.9) and its approximation (2.10) by transforming the reconstructed conductivity \( \gamma_e \) to an isotropic conductivity. This is done by extending \( \gamma_e \) by zero to whole \( \mathbb{C} = \mathbb{R}^2 \), and defining \( F_i : \mathbb{C} \rightarrow \mathbb{C} \) be the unique solution of the problem
\[
\begin{align*}
\overline{\partial} F_i(z) &= \mu(z) \partial F_i(z), \quad z \in \mathbb{C}, \\
F_i(z) &= z + h(z), \\
h(z) &\to 0 \text{ as } z \to \infty.
\end{align*}
\]
Here
\[
\mu(z) = \frac{\gamma_{e,11} - \gamma_{e,22} + 2i\gamma_{e,12}}{\gamma_{e,11} + \gamma_{e,22} + 2\sqrt{\det \gamma_e}}, \quad \gamma_e = [\gamma_{e,jk}]_{j,k=1}^2.
\]
Equation (2.11) has a unique solution by \( [2] \) as \( |\mu(z)| \leq c_0 < 1 \) and \( \mu(z) \) vanishes outside \( \Omega_m \). Note that the map \( z \mapsto F_i(z) \) can be considered as the isothermal coordinates in which \( \gamma_e \) can be represented as an isotropic conductivity. We say that the conductivity \( \gamma_e \) is isotropized by defining
\[
\gamma_i = (F_i)_* \gamma_e
\]
according to the formula (2.2). The conductivity \( \gamma_i \) is isotropic, and actually
\[
\gamma_i(x) = (\det \gamma_e)^{1/2} \circ F_i^{-1}(x) = \gamma \circ (F_i \circ F_e)^{-1}(x), \quad x \in \Omega_i = F_i(\Omega_m).
\]
In the following, we denote \( G = F_i \circ F_e : \Omega \rightarrow F_i(\Omega_m) \). The above procedure and [19] give us the following result:

**Proposition 1.** Let \( \Omega \) be a bounded, simply connected \( C^{1,\alpha} \)-domain with \( \alpha > 0 \). Assume that \( \gamma \in L^\infty(\Omega) \) is an isotropic conductivity and \( R_m \) its Robin-to-Neumann map. Let \( \Omega_m \) be a model of the domain satisfying the same regularity assumptions as \( \Omega \), and \( f_m : \partial \Omega \to \partial \Omega_m \) be a \( C^{1,\alpha} \)-smooth orientation preserving diffeomorphism.

Assume that we are given \( \partial \Omega_m \) and \( R_m = (f_m)_* R_m \). Let \( \gamma_e \) be solution of the minimization problem (2.9), \( F_i \) be the solution of the equations (2.11)-(2.14), and \( \gamma_i = (F_i)_* \gamma_e \). Then
\[
\gamma_i(x) = \gamma(G^{-1}(x)), \quad x \in \Omega_i = F_i(\Omega_m)
\]
where \( G : \Omega \to \Omega_i \) is a conformal map.

2.3. Shape-deforming reconstruction. Thus the obtained conductivity \( \gamma_i \) can be considered as a conformally deformed image of the conductivity \( \gamma \). As the map \( F_e \) corresponds to the minimally anisotropic conductivity and the maps \( F_i \) and \( G \) are related to the isotropization of the minimally anisotropic conductivity, the deformation \( G \) obtained above is small if \( F_e : \Omega \to \Omega_m \) is close to identity.

We will discuss the properties of this step further in Section 6.

3. Simulation of EIT data.
3.1. **Electrode model.** In practical EIT experiments, the data consists of a finite number of voltage and current measurements that are taken using a set of electrodes attached at the boundary \( \partial \Omega \). To model these measurements accurately, we employ the so-called complete electrode model ([25], [11]), which is a certain finite dimensional approximation of the Robin-to-Neumann map.

Let \( e_j \subset \partial \Omega, \ j = 1, \ldots, J \) be disjoint open paths modelling the electrodes that are used for the measurements. In the electrode model, the boundary conditions for the conductivity equation (1.2) are:

\[
\begin{align*}
&z_j \nu \cdot \gamma \nabla u + u|_{e_j} = U_j, \\
&\nu \cdot \gamma \nabla u|_{\partial \Omega \cup J_{j=1}^J e_j} = 0,
\end{align*}
\]

where \( U_j \) are constants representing electric potentials on electrode \( e_j \). This models the case where electrodes \( e_j \) having potentials \( U_j \) are attached to the boundary, \( z_j \) is the contact impedance between electrode \( e_j \) and the body surface, and the normal current outside the electrodes vanish (the gaps are insulated).

The existence and uniqueness of the solution \((u, U)\), where \( u \in H^1(\Omega) \) and \( U = (U_1, \ldots, U_J)^T \in \mathbb{R}^J \) is guaranteed by the charge conservation

\[
\sum_{\ell=1}^J I_\ell = 0, \tag{3.3}
\]

and by fixing the ground level of the potentials

\[
\sum_{\ell=1}^J U_\ell = 0, \tag{3.4}
\]

for details see [25].

The measurements in this model are the currents observed on the electrodes, given by

\[
I_j = \frac{1}{|e_j|} \int_{e_j} \nu \cdot \gamma \nabla v(x) \, ds(x), \quad j = 1, \ldots, J.
\]

Thus the electrode measurements are given by map

\[
E : \mathbb{R}^J \to \mathbb{R}^J, \quad E(U_1, \ldots, U_J) = (I_1, \ldots, I_J).
\]

We say that \( E \) is the electrode measurement matrix for \((\partial \Omega, \gamma, e_1, \ldots, e_J, z_1, \ldots, z_J)\).

The conditions for the applicability of the algorithm (2.9) in case of the electrode model (3.1)-(3.2) are given in Proposition 4.1 in [18]. In summary, when \( \Omega_m \) is our model of \( \Omega \) and the map \( f_m : \partial \Omega \to \partial \Omega_m \) is the model map for the boundary, the map \( f_m \) has to be length preserving on the electrodes. From the practical point of view, this means the very natural assumption that in electrode measurements the size of the electrodes has to be known correctly.

3.2. **Discretization and notation.** The finite dimensional approximation and numerical solution of the model (1.2),(3.1)-(3.4) is based on the finite element method (FEM). Detailed description on the variational form and FEM implementation of the model with anisotropic (matrix valued) conductivities is given in [20]. Here we give only the notation for the discretized problem.

In the discretized model, we represent the functions \( \eta(x) \) and \( \theta(x) \) in equation (2.6) as images on a finite dimensional pixel grid. That is, we write piecewise
constant approximations
\[
\eta(x) = \sum_{k=1}^{M} \eta_k \chi_k(x), \quad \theta(x) = \sum_{k=1}^{M} \theta_k \chi_k(x)
\]  
(3.5)

where \( \chi_k \) is the characteristic function of the \( k \)th pixel in the pixel grid and \( \eta_k, \theta_k \) are the pixel values of the parameters. With the representation (3.5), the parameters \( \eta \) and \( \theta \) are identified with the coefficient vectors
\[
\eta = (\eta_1, \eta_2, \ldots, \eta_M)^T \in \mathbb{R}^M, \quad \theta = (\theta_1, \theta_2, \ldots, \theta_M)^T \in \mathbb{R}^M
\]
and \( \lambda \) is a scalar parameter.

In practical EIT devices, the measurements are made so that known currents are injected into the domain \( \Omega \) through some of the electrodes at \( \partial \Omega \), and the corresponding voltages needed to maintain these currents are measured on some of the electrodes. Often, voltages are measured only on those electrodes that are not used to inject current. Thus, measurements made give only partial information on the matrix \( E \). To take this into account, we introduce the following notation for the discretized problem. We assume that the EIT experiment consists of a set of \( K \) partial voltage measurements, \( V^{(j)}, j = 1, \ldots, K \). For each measurement, consider a current pattern \( I^{(j)} \in \mathbb{R}^J, j = 1, \ldots, K \) such that the vector \( I^{(j)} \) fulfills the charge conservation law (3.3). Typically, the corresponding measurements are the voltages (potential differences) between pairs of neighboring electrodes. Let us assume that the measurement vector \( V^{(j)} \) corresponding to the current pattern \( I^{(j)} \) consist of \( L \) voltage measurements, i.e., we have \( V^{(j)} \in \mathbb{R}^L \). To take the presence of measurement noise into account, we model the measurement vector \( V^{(j)} \) by the additive noise model:
\[
V^{(j)} = P_j E^{-1} I^{(j)} + \epsilon^{(j)},
\]
where \( E \) is the electrode measurement matrix obtained from the FEM discretization (for details see [20]), random vector \( \epsilon^{(j)} \) models the measurement errors and \( P_j : \mathbb{R}^J \to \mathbb{R}^L \) is a measurement operator that maps the electrode potentials to the voltages.

In the computations, the voltage measurement vectors \( V^{(1)}, V^{(2)}, \ldots, V^{(K)} \) are concatenated into a single measurement vector
\[
V = (V^{(1)}, V^{(2)}, \ldots, V^{(K)})^T \in \mathbb{R}^N, \quad N = KL.
\]
For the finite element based discretization of the forward problem \( U : \mathbb{R}^{2M+1} \to \mathbb{R}^N \), we use respectively the notation
\[
U(\eta, \theta, \lambda) = (U^{(1)}(\eta, \theta, \lambda), U^{(2)}(\eta, \theta, \lambda), \ldots, U^{(K)}(\eta, \theta, \lambda))^T \in \mathbb{R}^N.
\]
Here,
\[
U^{(j)}(\eta, \theta, \lambda) = P_j E^{-1}(\eta, \theta, \lambda) I^{(j)} \in \mathbb{R}^L
\]
corresponds to partial voltage measurement with current pattern \( I^{(j)} \) and conductivity \( \hat{\gamma}_{\eta, \theta, \lambda} \).

3.3. Simulation examples and parameters. We demonstrate the reconstruction method using simulated measurement data from four test cases:

(Case 1): The measurement domain \( \Omega \) is an ellipse with main axes 17cm and 12cm in the \( x_1 \) and \( x_2 \) directions, respectively.
Figure 2. Measurement domain $\Omega$ in the Cases 1-4 ($\partial \Omega$ is shown with solid line). The model domain $\Omega_m$ in all cases is a circle with radius 14 cm ($\Omega_m$ is shown as gray patch).

(Case 2): The measurement domain $\Omega$ is a truncated ellipse with main axes 12cm and 17cm in the $x_1$ and $x_2$ directions, respectively. The truncation surfaces are defined by setting $x_1 = \min(x_1, 10)$ and $x_2 = \min(x_2, 15)$.

(Case 3): The measurement domain $\Omega$ is bounded by a smooth curve.

(Case 4): The measurement domain $\Omega$ is segmented from a computerized tomography image of the human chest.

The boundary of the measurement domain $\partial \Omega$ for each of the test cases is shown in Figure 2 with solid line.

In all four cases, we used a circle with radius of 14 cm as the model domain $\Omega_m$. The model domain is illustrated with gray patch in Figure 2. In the computations, the model domain $\Omega_m$ was discretized to a FEM mesh with $N_e = 4968$ triangular elements and $N_n = 2677$ node points. For the representation of the conductivity, $\Omega_m$ was divided to $M = 1021$ square pixels with pixel size $8 \times 8$mm$^2$.

We simulated an EIT system with $J = 16$ electrodes. The electrodes were located at approximately equally spaced positions at the boundary $\partial \Omega$ of the target domain $\Omega$. The EIT measurements were simulated using the traditional adjacent pair drive data acquisition method, where currents $+1$ and $-1$ are injected through
two neighboring electrodes, say electrodes $e_n$ and $e_{n+1}$, and current through other electrodes is zero. The voltages are measured between all $J-3$ pairs of electrodes with zero current. Each partial measurement consists of $L = J-3$ voltage measurements and we have $V^{(j)} \in \mathbb{R}^{J-3}$. This process is then repeated for all the $J$ pairs of adjacent electrodes, leading to total of $N = J(J-3)$ voltage measurements. Thus, with the $J = 16$ electrode system we have measurement vector $V \in \mathbb{R}^{208}$.

In all test cases we constructed isotropic target conductivity in the measurement domain $\Omega$. The simulated EIT measurements were computed using FEM. To avoid inverse crime, the simulated measurement and the reconstructions were computed using different FEM meshes. The numbers of node points $N_n$ and triangle elements $N_e$ in the FEM meshes used in the data simulation are listed in Table 1. We added Gaussian random noise with signal-to-noise ratio 42dB to the data. We chose contact impedances $z_\ell = 1$ and assumed them known in the reconstruction.

4. Shape-deforming reconstruction algorithm.

4.1. Recovering minimally anisotropic conductivity. We need to solve the regularized minimization problem (2.10). Note that as uniformly anisotropic conductivities of the form (2.6) have the property $\tilde{\gamma}_{\lambda,\eta,\theta} = \tilde{\gamma}_{\lambda',\eta,\theta'}$, where $\lambda' = 1/\lambda$ and $\theta'(x) = \theta(x) + \pi/2$, we can reparameterize (2.10) such that $\lambda$ gets values $\lambda > 0$. Thus, we write the discretized version of (2.10) as finding the minimizer of

$$F(\eta, \theta, \lambda) = \|V - U(\eta, \theta, \lambda)\|^2 + W_\eta(\eta) + W_\theta(\theta) + W_\lambda(\lambda), \quad \eta > 0, \lambda > 0,$$

where parameters $\eta, \theta, \lambda$ define a uniformly anisotropic conductivity of the form (2.6) in $\Omega_m$ and the regularizing penalty functionals are of the form

$$W_\eta(\eta) = \alpha_0 \sum_{k=1}^M \eta_k^2 + \alpha_1 \sum_{k=1}^M \sum_{j \in N_k} |\eta_k - \eta_j|^2,$$

$$W_\theta(\theta) = \beta_0 \sum_{k=1}^M \theta_k^2 + \beta_1 \sum_{k=1}^M \sum_{j \in N_k} |e^{i\theta_k} - e^{i\theta_j}|^2,$$

$$W_\lambda(\lambda) = \beta_2 \left( \log(\lambda) + \nu^{-2} \log(\lambda)^2 \right),$$

$\alpha_0, \alpha_1, \beta_0, \beta_1, \beta_2$ are non-negative, scalar valued regularization parameters and $N_k$ denotes the 4-point nearest neighborhood system for pixel $k$ in the pixel grid. To implement the positivity constraint for $\eta$ and $\lambda$ in the minimization problem, we carry out the minimization with respect to the parameterization

$$(\xi, \theta, \zeta), \quad \xi = \log(\eta) \in \mathbb{R}^M, \theta \in \mathbb{R}^M, \quad \zeta = \log(\lambda) \in \mathbb{R},$$

transforming the constrained optimization problem (4.1) into an unconstrained one

$$F(\xi, \theta, \zeta) = \|V - U(\exp(\xi), \theta, \exp(\zeta))\|^2 + W_\eta(\exp(\xi)) + W_\theta(\theta) + W_\lambda(\exp(\zeta)),$$

that can be solved in a straightforward way by gradient based optimization techniques. In this study, the minimization of (4.5) is carried out with the Gauss-Newton optimization method equipped with an explicit line search algorithm [22].
4.2. Isotropization. Given the estimates  
\[ \eta = \exp(\xi), \quad \theta, \quad \lambda = \exp(\zeta) \]
that define the estimated uniformly anisotropic conductivity in the model domain \( \Omega_m \), the second step of our algorithm consists of the isotropization of the anisotropic conductivity. For this step, we need to find the mapping \( F_i(z) \) by solving the equations (2.11)-(2.14) numerically as follows.

Define the solid Cauchy transform by
\[ Pf(z) = -\frac{1}{\pi} \int_{\mathbb{C}} \frac{f(\lambda)}{\lambda - z} dm(\lambda), \tag{4.6} \]
and Beurling transform by \( Sf = \partial Pf \). Note that \( P \) is the inverse operator of \( \partial \) and that \( S \) transforms \( \partial \) derivatives into \( \partial \) derivatives: \( S(\partial h) = \partial f \). The Beurling transform can be written as a principal value integral
\[ Sf(z) = -\frac{1}{\pi} \int_{\mathbb{C}} \frac{f(w)}{(w - z)^2} dw. \tag{4.7} \]
Substituting (2.12) to (2.11) gives \( \partial h(z) = \mu(z) + \mu(z) \partial h(z) = \mu(z) + \mu(z)S(\partial h)(z) \), which can be written in the form
\[ h(z) = P[I - \mu S]^{-1} \mu(z). \tag{4.8} \]

The inverse operator in (4.8) is well-defined as it can be expressed as a convergent Neumann series using the fact that \( |\mu(z)| < 1 \).

We introduce a periodic version of equation (4.8) as follows. Let \( R > 0 \) be so large that \( \text{supp}(\mu) \subset \Omega_m \subset B(0, R) \). Take \( \epsilon > 0 \) and set \( s = 2R + 3\epsilon \) and define a square \( Q := [-s, s]^2 \). Choose a smooth cutoff function
\[ \eta \in C_0^\infty(\mathbb{R}^2), \quad \eta(z) = \begin{cases} 1 & \text{for } |z| < 2R + \epsilon, \\ 0 & \text{for } |z| > 2R + 2\epsilon. \end{cases} \tag{4.9} \]
Define a 2s-periodic approximate Green’s function \( \tilde{g} \) by setting it to \( \eta(z)/(\pi z) \) inside \( Q \) and extending periodically:
\[ \tilde{g}(z + j2s + i\ell 2s) = \frac{\eta(z)}{\pi z} \quad \text{for } z \in Q \setminus 0, \quad j, \ell \in \mathbb{Z}. \tag{4.10} \]
Formula (4.6) can be viewed as convolution on the plane with the non-periodic Green’s function \( 1/(\pi z) \). Define a periodic approximate Cauchy transform by
\[ \tilde{P} f(z) = (\tilde{g} \ast f)(z) = \int_Q \tilde{g}(z - w) f(w) dw, \tag{4.11} \]
where \( \ast \) denotes convolution on the torus. Further, an approximate Beurling transform is defined in the periodic context by writing
\[ \tilde{\beta}(z + j2s + i\ell 2s) = \frac{\eta(z)}{\pi z^2} \quad \text{for } z \in Q \setminus 0, \quad j, \ell \in \mathbb{Z}, \]
and setting, analogously to (4.7), \( \tilde{S} f(z) := (\tilde{\beta} \ast f)(z) = \int_Q \tilde{\beta}(z - w) f(w) dw \). Now the sought-after periodic version of equation (4.8) takes the form
\[ \tilde{h}(z) = \tilde{P}[I - \tilde{\mu} \tilde{S}]^{-1} \tilde{\mu}(z), \tag{4.12} \]
where \( \tilde{\mu} \) is the trivial periodic extension of \( \mu \).

The practical benefit of considering equation (4.12) instead of (4.8) is the finite computational domain of (4.12), allowing straightforward numerical evaluation. But how does it help us to solve the periodic equation (4.12) instead of (4.8)?
Let $\varphi$ be a function with $\text{supp}(\varphi) \subset B(0, R)$, and denote by $\tilde{\varphi}$ the periodic extension of $\varphi$. Since the functions $(\pi \zeta)^{-1}$ and $\tilde{g}(\zeta)$ coincide for $|\zeta| = |z - w| < 2R + \epsilon$, the following identity holds for $|z| < R + \epsilon$:

\[(P\varphi)(z) = \frac{1}{\pi} \int_{\mathbb{S}^1} \frac{\varphi(w)}{z - w} dw = \int_{Q} \tilde{g}(z - w)\tilde{\varphi}(w)dw = (\tilde{P}\tilde{\varphi})(z). \quad (4.13)\]

Now we can write (4.8) and (4.12) using Neumann series as follows:

\[
h = P\left(\mu + \mu S(\mu) + \mu S(\mu S(\mu)) + \cdots\right), \quad (4.14)
\]

\[
\tilde{h} = \tilde{P}\left(\tilde{\mu} + \tilde{\mu} S(\tilde{\mu}) + \tilde{\mu} S(\tilde{\mu} S(\tilde{\mu})) + \cdots\right). \quad (4.15)
\]

Since $\mu$ is supported in $B(0, R)$, a combination of (4.13) and (4.14) and (4.15) yields

\[
\tilde{h}(z) = h(z) \quad \text{for } |z| < R. \quad (4.16)
\]

Thus we may evaluate the function $h(z_0)$ at any point $z_0 \in \mathbb{C}$ approximately:

1. Evaluate the function $\tilde{h}(z)$ approximately for a fine grid of points $z \in B(0, R)$ by truncating the infinite sum in formula (4.15). Numerical implementation of operators $\tilde{P}$ and $\tilde{S}$ is discussed in detail below.
2. If $z_0 \in B(0, R)$, then by (4.16) we have $h(z_0) = \tilde{h}(z_0)$ and can interpolate.
3. If $z_0 \notin B(0, R)$, then by (4.16) we can write $h(z_0) = P(\tilde{P}\tilde{h})(B(0, R))(z_0)$. The $\tilde{\partial}$ derivative can be approximated by finite differences, and the non-periodic Cauchy transform $P$ is easy to implement using numerical quadrature in (4.6).

It remains to explain the implementation of the operators $\tilde{P}$ and $\tilde{S}$. Choose a positive integer $m$, denote $M = 2^m$, and set $h = 2s/M$. Define a grid $\mathcal{G}_m \subset Q$ by

\[
\mathcal{G}_m = \left\{ jh : j \in \mathbb{Z}_m^2 \right\}, \quad (4.17)
\]

\[
\mathbb{Z}_m^2 = \left\{ j = (j_1, j_2) \in \mathbb{Z}^2 : |j_1| < 2^{m-1}, |j_2| < 2^{m-1}, \, \ell = 1, 2 \right\}.
\]

Note that the number of points in $\mathcal{G}_m$ is $M^2$. Define the grid approximation $\varphi_h : \mathbb{Z}_m^2 \to \mathbb{C}$ of a function $\varphi : Q \to \mathbb{C}$ by $\varphi_h(j) = \varphi(jh)$. Set

\[
\tilde{g}_h(j) = \left\{ \begin{array}{ll}
\tilde{g}(jh), & \text{for } j \in \mathbb{Z}_m^2 \setminus 0, \\
0, & \text{for } j = 0;
\end{array} \right. \quad (4.18)
\]

note that here the point $jh \in \mathbb{R}^2$ is interpreted as the complex number $h_{j_1} + ih_{j_2}$. Now $\tilde{g}_h$ is simply a $M \times M$ matrix with complex entries. Given a periodic function $\varphi$, the transform $\tilde{P}\varphi$ is approximately given by

\[(\tilde{P}\varphi_h)_h = h^2 \mathcal{F}^{-1}(\mathcal{F}(\tilde{g}_h) \cdot \mathcal{F}(\varphi_h)), \quad (4.19)\]

where $\mathcal{F}$ stands for discrete Fourier transform and $\cdot$ denotes element-wise matrix multiplication. This approach is based on the fact that convolution $*$ on the torus becomes multiplication under the Fast Fourier Transform. The discrete Beurling transform is given by

\[(\tilde{S}\varphi_h)_h = h^2 \mathcal{F}^{-1}(\mathcal{F}(\tilde{\beta}_h) \cdot \mathcal{F}(\varphi_h)), \quad (4.20)\]

where $\tilde{\beta}_h$ is the complex-valued $M \times M$ matrix

\[
\tilde{\beta}_h(j) = \left\{ \begin{array}{ll}
\tilde{\beta}(jh), & \text{for } j \in \mathbb{Z}_m^2 \setminus 0, \\
0, & \text{for } j = 0;
\end{array} \right. \quad (4.21)
\]
4.3. **Shape-deforming reconstruction.** Once the numerical approximation of the mapping $F_i(z) = z + h(z)$ has been found, we compute $\eta(\text{Re}(F_i(z)), \text{Im}(F_i(z)))$ as the reconstruction of the original isotropic conductivity. The only practical computation required by this step is interpolation of $\eta(\text{Re}(F_i(z)), \text{Im}(F_i(z)))$ from the irregular grid, which is given by numerical solution of $F_i(z)$.

<table>
<thead>
<tr>
<th>Measurement domain $\Omega$</th>
<th>simulation of data reconstruction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$N_n$ $N_e$ $N_n$ $N_e$ $M$</td>
</tr>
<tr>
<td>Ellipse (Case 1)</td>
<td>3052 5718 2741 5096 1048</td>
</tr>
<tr>
<td>Truncated ellipse (Case 2)</td>
<td>2963 5540 2680 4974 938</td>
</tr>
<tr>
<td>Fourier domain (Case 3)</td>
<td>3025 5588 2679 4972 1005</td>
</tr>
<tr>
<td>Chest CT (Case 4)</td>
<td>5116 9846 2740 5094 1060</td>
</tr>
</tbody>
</table>

5. **Numerical results.** We computed conventional isotropic reconstructions both in the correct domain $\Omega$ and in the incorrect model domain $\Omega_m$. These reference reconstructions were obtained by minimizing

$$H(\gamma) = ||V - U(\gamma)||^2 + W_\gamma(\gamma), \quad \gamma > 0,$$

(5.1)

where the unknown parameter vector $\gamma \in \mathbb{R}^M$ is the representation of isotropic conductivity in piecewise constant pixel basis and the regularization functional $W_\gamma$ is as in equation (4.2). The solution of (5.1) was computed by transformation to an unconstrained optimization problem by use of logarithmic parameterization $\varphi = \log(\gamma)$ and then finding the minimizer of

$$H(\varphi) = ||V - U(\exp(\varphi))||^2 + W_\gamma(\exp(\varphi))$$

(5.2)

with respect to $\varphi$ using the Gauss-Newton method.

The discretization details of the true measurement domain $\Omega$ in each of the test cases for the minimization of (5.2) are given in Table 1. The mesh and pixel grid that were used for minimization of (5.2) in the incorrect model domain $\Omega_m$ were the same that were used for the minimization of (4.5) in the proposed method (with $N_n = 2677$, $N_e = 4968$ and $M = 1021$).

The regularization parameters for the penalty functionals (4.2)-(4.4) in minimization of (4.5) were tuned manually in the first test case for visually best image quality and then these values were fixed for the remaining test cases. The values were $\alpha_0 = 10^{-5}$, $\alpha_1 = 10$, $\beta_0 = 10^{-5}$, $\beta_1 = 0.5$ and $\beta_2 = 0$. In each case, the Gauss-Newton optimization was started from the initial values $\eta = 1 \in \mathbb{R}^M$, $\theta = 0 \in \mathbb{R}^M$ and $\lambda = 1$ corresponding to isotropic unit conductivity. The regularization parameters for the functional $W_\gamma$ in the minimization of (5.2) were chosen...
similarly considering the first test case in the correct domain $\Omega$. The values were $\alpha_0 = 10^{-5}$ and $\alpha_1 = 10$.

The results for the Case 1 are shown in Figure 3, top row of Figure 7 and top left in Figure 8. The target conductivity and true measurement domain $\Omega$ is shown in the top left in Figure 3. The reconstruction in the top right is the conventional reconstruction of isotropic conductivity using the correct domain $\Omega$. The reconstruction was obtained by minimization of (5.2). The bottom left is the isotropic reconstruction by minimization of (5.2) using the incorrect model domain $\Omega_m$. The bottom right shows the reconstruction with the proposed method using the incorrect model domain $\Omega_m$. The image shows the determinant $\eta = (\det \gamma_e)^{1/2}$ of the uniformly anisotropic conductivity $\gamma_e$ in the isothermal coordinates $F_i(z)$, i.e., the displayed quantity is $\eta(\text{Re}(F_i(z)), \text{Im}(F_i(z)))$. The uniformly anisotropic conductivity $\gamma_e := \gamma_{\lambda, \theta, \eta}$ (see 2.6) was computed by minimization of (4.5) using the model domain $\Omega_m$. The top row of Figure 7 shows the reconstructed parameters $\eta$ and $\theta$ in the model domain $\Omega_m$. Result of the isotropization step for Case 1 is shown in top left in Figure 7. Using the reconstructed conductivity $\gamma_e$, the numerical approximation of the map $z \mapsto F_i(z)$ was obtained by solving equations (2.11)-(2.14) as explained in Figure 4.2. The images in Figure 8 show for each of the four test cases the recovered isothermal coordinates $F_i(z_i)$ corresponding to set of points $\{z_i\}$ that define uniform grid in the model domain $\Omega_m$. The solid line in the subfigures in Figure 8 show the boundary $\partial \Omega$ of the measurement domain.

The corresponding results for Case 2 are shown in Figure 4, the second row of Figure 7 and top right in Figure 8. For Case 3 the results are shown in Figure 5, the third row of Figure 7 and bottom left in Figure 8, and for Case 4 the results are shown in Figure 6, the bottom row of Figure 7 and bottom right in Figure 8.

6. Discussion. As can be seen from Figures 3-6, the conventional reconstruction of isotropic conductivity using the incorrect model domain $\Omega_m$ has severe reconstruction errors in all cases. The effect of incorrectly modeled geometry are seen as spurious details, especially near the boundary of the model domain. On the other hand, when using the same incorrect model geometry $\Omega_m$, the proposed method produces reconstructions that are nearly similar to the conventional reconstruction that is computed in the correct geometry $\Omega$, and also the shape of the domain has been recovered reasonably well in all test cases. These findings indicate that the proposed approach can efficiently eliminate reconstruction errors that arise from inaccurately known measurement domain in EIT.

To explain the good performance of our shape-deforming reconstruction method, let us consider properties of the conformal map $G$. Assume that a modeling map $f_m : \partial \Omega \rightarrow \partial \Omega_m$ of the boundary, which is a $C^{1,\alpha}$-smooth diffeomorphism, is a boundary value of $C^{1,\alpha}$-smooth diffeomorphisms $F_m^{\text{in}} : \Omega \rightarrow \Omega_m$ and $F_m^{\text{out}} : \mathbb{R}^2 \setminus \overline{\Omega} \rightarrow \mathbb{R}^2 \setminus \overline{\Omega_m}$, that is, $F_m^{\text{in}}|_{\partial \Omega} = f_m$ and $F_m^{\text{out}}|_{\partial \Omega} = f_m$ (for the existence of such maps, see [23]). These maps can be considered as the modeling maps of the interior domain and the exterior domain. Together they define the map $F_m : \mathbb{R}^2 \rightarrow \mathbb{R}^2$,

$$F_m(x) = \begin{cases} 
F_m^{\text{in}}(x), & x \in \Omega, \\
f_m(x), & x \in \partial \Omega, \\
F_m^{\text{out}}(x), & x \in \mathbb{R}^2 \setminus \overline{\Omega}.
\end{cases}$$
Let us assume that
\[
\|DF^{in}_m(x) - I\|_{L(R^2,R^2)} \leq \varepsilon_0, \quad x \in \Omega, \\
\|DF^{out}_m(x) - I\|_{L(R^2,R^2)} \leq \varepsilon_0, \quad x \in \mathbb{R}^2 \setminus \overline{\Omega},
\]
where \(0 < \varepsilon_0 < 1\), \(DF^{in}_m\) is the Jacobi matrix of map \(F^{in}_m\) and \(I \in \mathbb{R}^{2 \times 2}\) is the identity matrix. Then \(F_m : \mathbb{R}^2 \to \mathbb{R}^2\) is a \(K_0\)-quasiconformal map, where
\[
K_0 = \frac{1 + \varepsilon_0}{1 - \varepsilon_0}.
\] (6.2)

Let now \(F^e_m : \Omega \to \Omega_m\) be a Teichmüller extremal map (quasiconformal with smallest possible dilation) with boundary value \(F^e_m|_{\partial \Omega} = f_m\). Also, let \(F^{out}_\text{mod} : \mathbb{R}^2 \setminus \overline{\Omega} \to \mathbb{R}^2 \setminus \overline{\Omega_m}\) be a quasiconformal map having boundary value \(F^{out}_\text{mod}|_{\partial \Omega} = f_m\), whose dilatation is smaller or equal to the dilatation of the exterior map \(F^{out}\).

Denote the Riemann sphere by \(S^2 = \mathbb{R}^2 \cup \{\infty\}\). Now \(F^{out}_\text{mod}\) can be extended to a map \(S^2 \setminus \overline{\Omega} \to S^2 \setminus \overline{\Omega_m}\) with infinity as a fixed point. It is not clear if, among the quasiconformal maps \(H : S^2 \setminus \overline{\Omega} \to S^2 \setminus \overline{\Omega_m}\) with infinity as a fixed point and the prescribed boundary values, there exist one whose dilatation is the smallest.

Let \(K^{in}\) and \(K\) be the dilatations of \(F^e_m\) and \(F^{out}_\text{mod}\), correspondingly. Then
\[
K^{in} \leq K_0 \quad \text{and} \quad K \leq K_0.
\] (6.3)

Let us define \(\varepsilon_1\) such that \(K = (1 + \varepsilon_1)/(1 - \varepsilon_1)\). Then \(0 \leq \varepsilon_1 \leq \varepsilon_0\). Define
\[
F^{\text{plane}}_{\text{mod}}(x) = \begin{cases} 
F^e_m(x), & x \in \Omega, \\
F^{in}_m(x), & x \in \partial \Omega, \\
F^{out}_\text{mod}(x), & x \in \mathbb{R}^2 \setminus \overline{\Omega}.
\end{cases}
\]

Then \(F^{\text{plane}}_{\text{mod}} : \mathbb{R}^2 \to \mathbb{R}^2\) quasiconformal. Let us now consider the map \(g : \mathbb{R}^2 \to \mathbb{R}^2\) defined by \(g = F^e_1 \circ F^{\text{plane}}_{\text{mod}}\). As the restriction \(g|_{\Omega} : \Omega \to \Omega_1\) is conformal, we see that \(g : \mathbb{R}^2 \to \mathbb{R}^2\) map is \(K\)-quasiconformal. Moreover, it satisfies \(g|_{\Omega} = G\).

As \(g : \mathbb{R}^2 \to \mathbb{R}^2\) is \(K\)-quasiconformal satisfies by [3, Cor. 3.10.4 and p. 81] a quasisymmetry estimate
\[
\frac{|g(x) - g(z)|}{|g(y) - g(z)|} \leq \eta_K \left( \frac{|x - z|}{|y - z|} \right), \quad \frac{|x - z|}{|y - z|} \leq \eta_K \left( \frac{|g(x) - g(z)|}{|g(y) - g(z)|} \right),
\] (6.4)

for all \(x, y, z \in \mathbb{R}^2\), where \(\eta_K(t) = \lambda(K)^{2K} \max(t^K, t^{1/K})\) for \(t \geq 0\) and
\[
1 \leq \lambda(K) \leq \frac{1}{16\pi K}, \quad \lim_{K \to 1} \lambda(K) = 1.
\]

Let us now consider the meaning of the estimate (6.4). We started from the assumption that the boundary modeling map \(f_m\) is the boundary value of diffeomorphisms satisfying estimates (6.2) and (6.3). Then \(F^{out}_\text{mod}\) is a quasiconformal map having boundary value \(f_m\) with the dilatation \(K\). This dilatation satisfies \(K \leq K_0\) and it may be much closer to one than \(K_0\). For instance, if \(f_m\) happens by chance to be a boundary value of a conformal map from the exterior of \(\Omega\) to the exterior of \(\Omega_m\), the dilatation \(K\) has the value one, and \(\varepsilon_1 = 0\). Using this map we obtained the \(K\)-quasiconformal homeomorphism \(g : \mathbb{R}^2 \to \mathbb{R}^2\) and the image \(\Omega_1 = g(\Omega)\). If \(K - 1\) is very small, the map \(g\) satisfies a global estimate (6.4) where \(\eta_K(t)\) is quite close to the identity map. The closer \(K\) is to 1, the closer \(\eta_K(t)\) is to identity. Next, let us assume for simplicity that \(0 < \varepsilon_0 < 10^{-2}\), so that \(K - 1 \leq 3\varepsilon_1\), and that \(\text{diam}(\Omega) \leq 1\). Then, if \(x, y, z \in \partial \Omega\) are arbitrary points which mutual distances
are larger than $h = \varepsilon_0$, we see from (6.4) that the relative distances of the points $x, y, z \in \partial \Omega$ and the points $x', y', z' = g(x), y', z' = g(z) \in \partial \Omega_i$ satisfy
\[
\frac{|x' - z'|}{|y' - z'|} \leq \frac{|x - z|}{|y - z|} \leq \frac{1}{L} \frac{1}{\ln h} (K - 1) + \lambda (K^{2K - 1})(6.5)
\]
\[
\leq L (1 + 3\varepsilon_1), \quad L = \lambda (1 + 3\varepsilon_1).
\]
Note that the last term is of the form $O(\varepsilon_1/\ln \varepsilon_0) \leq O(\varepsilon_1/\log(\varepsilon_1))$ as $\varepsilon_1 \leq \varepsilon_0$ and $\varepsilon_1 \to 0$. Thus, is the scales larger that $h = \varepsilon_0$ the boundaries $\partial \Omega$ and $\partial \Omega_i$ are, up to small errors, equivalent in an Euclidean similarity transform. We emphasize that in the construction $\varepsilon_1$ may be much smaller than $\varepsilon_0$. In this case the errors in (6.5) are much smaller than in the worst case where $\varepsilon_1$ in equal to $\varepsilon_0$. This may explain why the reconstruction of the domain is our practical examples are so good.

Theoretically, the reconstruction may also fail: If one by chance has a boundary modeling map $f_m$ which is a boundary value of a conformal map $F_m : \Omega \to \Omega_m$, then the map $F_i$ is just the identical map and the reconstructed image of the domain $\Omega_i$ is equal to the original model domain $\Omega_m$. Due to the Riemann mapping theorem, $\Omega_m$ can be an arbitrary bounded simply connected domain.

Summarizing: If the boundary modeling map happens to be close to the set
\[
X = \{h|_{\partial \Omega} : h : \mathbb{R}^2 \setminus \Omega \to \mathbb{R}^2 \setminus \Omega_m \text{ is conformal,} \quad h : \mathbb{R}^2 \setminus \Omega \to \mathbb{R}^2 \setminus \Omega_m \text{ is homeomorphism}\}
\]
then $\Omega_i$ is close to $\Omega$ up to a similarity transformation.

REFERENCES


Received xxxx 20xx; revised xxxx 20xx.

E-mail address: ville.kolehmainen@uef.fi
E-mail address: matti.lassas@helsinki.fi
E-mail address: petri.ola@helsinki.fi
E-mail address: samuli.siltanen@helsinki.fi
Figure 3. (Case 1). Top left: True conductivity and the measurement domain $\Omega$. Top right: Reconstruction of isotropic conductivity using the correct domain $\Omega$. Bottom left: Reconstruction of isotropic conductivity using incorrect model geometry $\Omega_m$. Bottom right: Reconstruction with the proposed method using the incorrect model geometry $\Omega_m$. The image shows the parameter $\eta$ in the isothermal coordinates $z \mapsto F_i(z)$ (i.e., displayed quantity is $\eta(\text{Re}(F_i(z)), \text{Im}(F_i(z))))$. 
Figure 4. (Case 2). Top left: True conductivity and the measurement domain $\Omega$. Top right: Reconstruction of isotropic conductivity using the correct domain $\Omega$. Bottom left: Reconstruction of isotropic conductivity using incorrect model geometry $\Omega_m$. Bottom right: Reconstruction with the proposed method using the incorrect model geometry $\Omega_m$. The image shows the parameter $\eta$ in the isothermal coordinates $z \mapsto F_i(z)$ (i.e., displayed quantity is $\eta(\text{Re}(F_i(z)), \text{Im}(F_i(z)))$)
Figure 5. (Case 3). Top left: True conductivity and the measurement domain $\Omega$. Top right: Reconstruction of isotropic conductivity using the correct domain $\Omega$. Bottom left: Reconstruction of isotropic conductivity using incorrect model geometry $\Omega_m$. Bottom right: Reconstruction with the proposed method using the incorrect model geometry $\Omega_m$. The image shows the parameter $\eta$ in the isothermal coordinates $z \mapsto F_i(z)$ (i.e., displayed quantity is $\eta(\text{Re}(F_i(z)), \text{Im}(F_i(z)))$).
Figure 6. (Case 4). Top left: True conductivity and the measurement domain $\Omega$. The domain $\Omega$ is a cross section of human chest obtained from a CT reconstruction. Top right: Reconstruction of isotropic conductivity using the correct domain $\Omega$. Bottom left: Reconstruction of isotropic conductivity using incorrect model geometry $\Omega_m$. Bottom right: Reconstruction with the proposed method using the incorrect model geometry $\Omega_m$. The image shows the parameter $\eta$ in the isothermal coordinates $z \mapsto F_i(z)$ (i.e., displayed quantity is $\eta(\text{Re}(F_i(z)), \text{Im}(F_i(z)))$)
Figure 7. Results of step 1 of the algorithm for the test cases 1-4. Left: $\eta$. Right: $\theta$. The estimates were obtained by minimization of (4.5) using the model domain $\Omega_1$ (circle with radius of 14 cm).
Figure 8. Approximate recovery of the deformation and domain boundary. Each subfigure shows the isothermal coordinates $z \mapsto F_i(z)$ that were obtained from the numerical solution of (2.11)-(2.14). The boundary $\partial \Omega$ of the true measurement domain is shown with solid line.