
INSTITUTE OF PHYSICS PUBLISHING PHYSICS IN MEDICINE AND BIOLOGY

Phys. Med. Biol. 48 (2003) 1465–1490 PII: S0031-9155(03)57801-0

Statistical inversion for medical x-ray tomography
with few radiographs: II. Application to dental
radiology

V Kolehmainen1, S Siltanen2, S Järvenpää3, J P Kaipio1, P Koistinen3,
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Abstract
Diagnostic and operational tasks in dental radiology often require three-
dimensional information that is difficult or impossible to see in a projection
image. A CT-scan provides the dentist with comprehensive three-dimensional
data. However, often CT-scan is impractical and, instead, only a few projection
radiographs with sparsely distributed projection directions are available.
Statistical (Bayesian) inversion is well-suited approach for reconstruction from
such incomplete data. In statistical inversion, a priori information is used to
compensate for the incomplete information of the data. The inverse problem
is recast in the form of statistical inference from the posterior probability
distribution that is based on statistical models of the projection data and
the a priori information of the tissue. In this paper, a statistical model
for three-dimensional imaging of dentomaxillofacial structures is proposed.
Optimization and MCMC algorithms are implemented for the computation of
posterior statistics. Results are given with in vitro projection data that were
taken with a commercial intraoral x-ray sensor. Examples include limited-
angle tomography and full-angle tomography with sparse projection data.
Reconstructions with traditional tomographic reconstruction methods are given
as reference for the assessment of the estimates that are based on the statistical
model.
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1. Introduction

The main tool in dental radiology is the x-ray projection image that reveals inner structure of
bone and teeth. However, the obvious drawback of a projection (or a panoramic) image is
irreversible overlapping of structures. Certain diagnostic and operative tasks often require
more precise knowledge of the three-dimensional structure of tissue than is available in single
projection image. Such tasks include (Brocklebank 1997, Ekestubbe et al 1997, Ramesh et al
2002)

• Deciding whether two roots have grown together with common root canal or not.
• Detection of alveolar decease, or bone loss between teeth.
• Implant planning.
• Finding out whether certain roots have intimate relationship with the inferior dental canal.

This is related to the risk of damaging nerves when removing a tooth.
• Analysis of the form of the condylar process in the temporomandibular joint.

We consider taking a small number of projection images of the tissue from sparsely distributed
directions using the dentist’s regular x-ray equipment and reconstructing the 3D structure of
tissue from the projections. More precisely, we consider the following two types of sparse
projection data:
(A) Sparse limited-angle data. In intraoral imaging a few projection radiographs are taken

with a small digital sensor in fixed position inside the patient’s mouth. Due to
geometrical restrictions, the x-ray source positions are limited to a cone with opening
angle significantly less than 180◦.

(B) Sparse full-angle data. In extraoral imaging the region of interest is imaged through the
head from a small number of sparsely distributed projection directions.

For both data types, the projection images are often truncated due to small detector size or
in order to minimize dose to vital organs. In these cases the image reconstruction has the
additional complication of local tomography problem. Both data types, (A) and (B), lead to
ill-posed image reconstruction problems (i.e., the solution is sensitive to measurement errors
and/or the problem does not have unique solution).

It is well known that traditional CT algorithms, such as filtered backprojection, are
not well-suited for projection data of type (A) or (B) since these data types violate the
assumptions of those algorithms. Despite this conflict between the data and the assumptions,
traditional methods have been widely used for both data types. For data type (A) a traditional
reconstruction method is tuned aperture computed tomography (TACT) method (Webber
1998, Grant 1972, Ziedses des Plantes 1932), which is basically equivalent to unfiltered
backprojection. For data type (B) a popular traditional method is filtered backprojection
(FBP) in the case of global tomography (i.e., projections are not truncated). For the local
tomography data of type (B), a usual method is �-tomography which has been developed
for local tomography problems with non-sparse full-angle projection data (Smith and Keinert
1985, Kuchment et al 1995, Faridani et al 1992, 1997).

Statistical inversion (SI) is a well-suited approach for 3D reconstruction with both data
types (A) and (B). In statistical inversion, a priori knowledge of the tissue is used in the image
reconstruction problem in order to compensate for the incomplete information in the sparse
projection data. Separate statistical models (probability distributions) are formulated for
(a) the acquisition of the projection data and (b) the a priori information. Based on these
models and the Bayes formula, a complete solution of the inverse problem is obtained as the
posterior probability distribution. Final images of the target are then obtained as point estimates
from the posterior distribution. In contrast to traditional reconstruction methods, the statistical
approach gives natural means for the computation of confidence limits for the estimates.
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We propose a statistical model for three-dimensional dental imaging. In the proposed
model, we approximate the three-dimensional problem by a stack of two-dimensional
problems. In the Bayesian model for each two-dimensional problem we use the following
prior models:

(i) For each 2D slice we use a total variation (TV) prior model. Total variation is a feasible
prior model for dental structures since they are expected to consist of a few approximately
homogeneous regions with sharp, well-defined boundaries.

(ii) To take the 3D nature of the problem into account, a L1-prior is used in the model for the
distance of the current slice from the previous one. This is based on the assumption that the
cross-section of dental structures does not change much between two consecutive slices.

(iii) Positivity prior, which in short means that x-rays can only attenuate and not intensify
inside tissue.

To illustrate the performance of the model, results with in vitro sparse projection data
are given. For data type (A) we consider two examples. The first example is a model
problem with sparse projection data from a tooth phantom. For this test case, the ground
truth is given by a full-angle reconstruction. The second example for (A) is reconstruction
using truncated intraoral measurements from a realistic head phantom. For both cases, the
maximum a posteriori (MAP) estimates are presented as reconstructions of the target. For
both cases traditional tomosynthetic (backprojected) reconstructions are shown as reference
images for the assessment of the statistical model. For the first test case, we will also give
an illustrative example of more complete statistical inference from the posterior distribution
using Markov chain Monte Carlo (MCMC) methods.

For data type (B) we consider also two examples. The first example is a model problem
using full-angle sparse projection data from the tooth phantom. MAP estimates are represented
as images of the target and reconstructions with the widely used filtered backprojection (FBP)
method are shown as reference images. The second test case for (B) is full-angle reconstruction
from sparse projection data with truncated projections from a jaw phantom. MAP estimates
are represented as images of the target. Backprojection and �-tomography reconstructions
are shown as reference images.

Application of Bayesian inversion to dental radiology appears to be new. Statistical
methods have been used for data type (B) in Sukovic et al (2001), however, only likelihood
distribution is used for the reconstruction. With the model introduced in this paper it is possible
to further improve (Sukovic et al 2001) with simultaneous reduction in radiation dose.

This paper is organized as follows. In section 2 we discuss the transformation of digital
radiographs to tomographic data. We also discuss the experimental imaging geometries used
in the examples. In section 3.1 we discuss the statistical model that is used in this paper.
The discussion is mainly based on the theory and models that were presented in part I of this
paper. We also discuss the computation of the point estimates. A gradient-based optimization
approach is given for the computation of the MAP estimate, and then computation of other
usual statistics that necessitate integration is discussed. Results with the experimental data are
given in section 4 and in section 5 we give conclusions.

2. From digital radiographs to tomographic data

The projection radiographs of the targets were acquired using a commercial intraoral x-ray
detector Sigma and a dental x-ray source Focus6. As explained in section 3.2, part I of this
6 Sigma and Focus are registered trademarks of Instrumentarium Corp. Imaging Division.
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paper, the input data of tomographic algorithms is a collection of line integrals of the unknown
attenuation coefficient function. For each pixel value in each projection image we need to
(a) determine the path of the detected x-ray through the pixel/voxel grid and (b) the amount
of attenuation of the x-ray through that path. We discuss the transformation of the projection
data in section 2.1 and the measurement geometries for the experiments in sections 2.2–2.4.

2.1. From detected pixel values to attenuation measurements

The Sigma detector is based on charge coupled device (CCD) technology and it is capable
of sensing roughly 2000 grey levels. Size of the active imaging area is 34 × 26 mm and the
resolution is 872 × 664 pixels. After exposure, each pixel contains a positive integer which is
directly proportional to the number of x-ray quanta that hit the pixel’s area.

A detected pixel value p is transformed to tomographic attenuation measurement P as
follows. Let M be the logarithm of the maximum pixel value over all detector pixels. We
define the tomographic data as

P = M − log(p). (1)

What kind of error is introduced by this transformation? The ideal tomographic data should
be the integral of the attenuation coefficient x(s) along the x-ray path L:

P ′ =
∫

L

x(s) ds = log(I0) − log(I1).

The pixel value p is directly proportional to the final intensity: p = aI1. If the detector is
partly illuminated by direct radiation, we have M ≈ log(aI0) = log(a) + log(I0). Then

P = M − log(p) ≈ log(a) + log(I0) − log(a) − log(I1) = P ′.

Thus, the above transformation is a feasible choice for problems in which the distance and
angle of the x-ray source are fixed with respect to the detector and every projection contains
some ‘air-only’ observations. Without such observations, log(I0) needs to be calibrated from
imaging parameters.

2.2. Experimental setup for the tooth phantom model problem

In order to get full-angle reconstructions as a reference for the limited-angle reconstructions in
the model problem with the tooth phantom, we used the conventional cone beam CT-geometry,
which is shown schematically in figure 1, for our laboratory experiments.

The experiments were carried out as follows. The Sigma CCD-detector and the Focus
x-ray source were attached into fixed positions such that the source direction is normal to the
detector array. The distance from the focal spot to the detector array was 840 mm. The tooth
phantom, which was a third mandibular molar removed from a female patient of age 25, was
placed on a rotating platform, so that projections from different angles can be obtained. The
distance from the centre of rotation to the detector was 56 mm. Left image in figure 2 shows
one raw 872 × 664 projection image from the experiments, the middle image shows one row
(i.e., raw data for one two-dimensional slice) from the projection image and the right image
shows the same row in the form of tomographic data. We note that the white triangles in the
lower corners of the projection image in figure 2 do not correspond to detected radiation. They
result from the rounded corners of the intraoral detector.

The purpose of the wires that are seen in the lower part of the left image in figure 2 is to
give information about the location and alignment of the rotation axis in the projection images.
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X–ray source

CCD detector array

Tooth

Figure 1. Cone beam imaging geometry for full-angle tomography. This geometry was used in
the experiments with the tooth phantom. Circles denote the source locations for the full-angle data
(23 projections from total view-angle of 187◦). The projections that were used in limited-angle
computations (nine projections from view-angle of 68◦) are denoted by black dots within the
circles. For clarity, the location and alignment of the detector with respect to the source is depicted
only for one source location.

1 664
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3287
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Figure 2. Left: 872 × 664 projection radiograph from the tooth phantom. Note that the image
is shown with inverted colourmap (i.e., black corresponds to high photon counts). Middle: pixel
values of the 200th row from the raw projection radiograph. Right: same row in the form of
tomographic attenuation data.

In the sum image of all projections, the wires appear as a sandglass shaped object. The node
of this sandglass gives rotation axis for one slice and the inclination angle of the rotation axis
can be obtained by computing the normal direction to the path in sum image that is drawn
by the upper end of the longer wire. The projection angles were read from a millimeter scale
paper that was attached around the rotating platform of the tooth phantom.

We note that this experimental geometry corresponds to the case in which the source and
detector array move on a horizontal circle. Thus, the projection directions are restricted onto a
circular arc. Also, the source-to-detector distance is relatively long with respect to the physical
size of the Sigma detector. These allow us to approximate the 3D reconstruction problem by
a stack of two-dimensional problems with a reasonably good accuracy. The development of
purely 3D methods is left to future studies.

Finally, the transpose of each of the transformed projection images corresponds to one
block of the tomographic data for the 3D experiment. As an example, the left image in figure 3
shows one column (i.e., line integral data from all projections for one two-dimensional slice)
of this block matrix for the data from the tooth in traditional sinogram form. The data were
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Figure 3. Sinogram for the 200th slice of the projection data from the tooth phantom. Left:
projections used in this sinogram were collected from 187◦ angle of view (23 projections with
8.5◦ projection interval). Right: the 68◦ part of the sinogram that was used for the limited-angle
reconstructions.

Dental arc

Intraoral sensor

X–ray source positions

Figure 4. Imaging geometry for intraoral measurements. The detector is in fixed position inside
the patient’s mouth. This geometry was used in the test case with the head phantom.

collected by taking 23 projections with total 187◦ angle of view. Referring forward to the
first model problem, which is the limited-angle reconstruction from sparse projection data, the
right image in figure 3 shows the part of sinogram (nine projections with 68◦ angle of view)
that was used in the limited-angle reconstructions.

2.3. Measurement geometry for intraoral imaging

In intraoral dental x-ray imaging, the measurement geometry is such that the detector is in
fixed position inside the patient’s mouth and the dentist can move the x-ray source, which is
mounted on a foldable arm, with respect to the intraoral detector. This geometry is illustrated
schematically in figure 4.

In this study, this geometry was used for the limited-angle experiments with the realistic
head phantom. In the experiments, the Sigma detector was placed in a fixed position inside
the mouth of the head phantom such that it was right behind the teeth to be imaged. The x-ray
source was mounted on a foldable arm which was used to move the source on an approximately
circular arc with distance of ∼590 mm from the detector.
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ROI

X–ray source

CCD detector array

Jawbone

Figure 5. Cone beam imaging geometry for local tomography. This geometry was used in the
last test case with the jaw bone phantom. The source positions for the experiments (23 projections
from view-angle of 187◦) are denoted by circles. The region of interest (ROI) is denoted by thin
line. For clarity, the location and alignment of the detector with respect to the source is depicted
only for one source location.

2.4. Measurement geometry for extraoral imaging

In extraoral imaging, the region of interest (ROI) is imaged from different directions through
the head. Typical geometry for extraoral imaging is illustrated in figure 5. The patient is kept
in fixed position. The source and the detector array are mounted onto a rotating platform that
can be used to move the source and detector array to different projection angles. There are
some dedicated devices for such measurements (Mozzo et al 1998, Sukovic et al 2001). We
note that extraoral imaging (as depicted in figure 5) leads to local tomography problem.

Our last test case is extraoral imaging with sparse projection data from a jaw bone phantom.
There the experimental setup was implemented similarly to the setup explained in section 2.2:
the phantom was placed on the rotating platform and the Sigma detector and x-ray source
were mounted into fixed positions. With the exception of different source-to-detector distance
(1292 mm) and centre of rotation-to-detector distance (88 mm), the geometrical details of the
experimental setup were the same as in section 2.2.

3. Statistical inversion in 3D dental imaging

3.1. Statistical model for dental imaging

In this section we discuss the application of the statistical inversion approach to three-
dimensional dental imaging. As was discussed previously, we approximate the 3D problem
by a stack of j = 1, 2, . . . , Nsli two-dimensional problems.

Let

x(j) =
M∑
i=1

x
(j)

i χi (2)

where χi is the characteristic function of pixel �i in the two-dimensional pixel lattice,
denote the discrete representation of the j th slice in the stack of two-dimensional slices.
In the following, we will identify the function (2) by the coefficient vector x(j) =(
x

(j)

1 , x
(j)

2 , . . . , x
(j)

M

)T ∈ R
M . Further, let

m(j) = Ax(j) + ε(j) (3)

denote the observation model for the j th 2D problem. In equation (3), m(j) =(
m

(j)

1 ,m
(j)

2 , . . . ,m
(j)

N

)T ∈ R
N is the vector of tomographic data for j th two-dimensional slice
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and ε(j) ∈ R
N denotes the observation noise. It should be noted that with our experimental

setup, the model matrix is not the same for each 2D slice due to the possible displacement
of the rotation axis between different slices m(j) of the projection data. Also, the size of the
data vector m(j) may vary due to the rounded corners of the Sigma detector (see figure 2).
However, due to notational simplicity, we use the notation A

.= A(j) for the model matrix and
N

.= Nj for the dimension of the projection data vector in the following.
The statistical model we use for dental imaging was introduced in sections 3.1, 3.2, part I

of this paper. As the prior model for the two-dimensional slices x(j) of the dental structures we
use the total variation (TV) prior. Within the discretization (2) of the 2D attenuation coefficient
function, the total variation can be written as

TV(x(j)) =
Ne∑
k=1

lk
∣∣�T

k x(j)
∣∣ (4)

where lk is the length of the edge between the adjacent pixels �ik1
and �ik2

, �k ∈ R
M is the

vector (
ik1

) (
ik2

)
�k = (0, . . . , 1, 0, . . . , 0, −1, 0, . . . , 0)T

and Ne is the number of edges (s.t. lk = |∂�ik1

⋂
∂�ik2

| > 0) connecting two adjacent pixels
in the 2D lattice.

The total variation prior density for the 2D attenuation coefficient x(j) is defined as

pTV(x(j)) ∝ e−αTV(x(j)) (5)

where the total variation is calculated using equation (4). The total variation prior can be
considered as a feasible model for dental structures, since it has high probability density for
level set type images which consist of a few (almost) constant attenuation levels which are
bounded by short, well-defined boundary lines. The use of TV prior for the regularization of
inverse problems has been discussed for example in Vassilevski and Wade (1997), Kaipio et al
(2000), Persson et al (2001) and the use of TV constraints for image enhancement in Dobson
and Santosa (1994, 1996), Dobson and Vogel (1997).

To take the three-dimensional structure of the target into account in the stack of two-
dimensional reconstructions, we use a (conditional) L1-prior between the slices x(j) and
x(j−1). Let x̂(j−1) denote an estimate for the slice x(j−1) (with initialization x̂(0) = 0). Within
the discrete framework, this coupling prior density can be written in the form

pL1(x(j)|x̂(j−1)) ∝ exp(−γ ‖x(j) − x̂(j−1)‖L1)

= exp

(
−γ

M∑
k=1

|�k|
∣∣x(j)

k − x̂
(j−1)

k

∣∣) . (6)

The L1-prior is concentrated around images x(j) which are close to x̂(j−1) but may have a few
large deviations with small support. For an extensive discussion on this feature, see the article
(Donoho et al 1992). We chose the model (6) based on the assumption that the cross-section
of dental structures does not change much between two consecutive slices.

Taking into account the positivity prior p+(x
(j)) for the attenuation coefficient,

equation (19) in part I of this paper, and using equations (5) and (6), the overall (conditional)
prior density for slice x(j) assumes the form

p(x(j)|x̂(j−1)) ∝ p+(x
(j)) exp(−αTV(x(j)) − γ ‖x(j) − x̂(j−1)‖L1). (7)

For the observation errors ε(j) we make the assumption that they are Gaussian with zero-
mean (ε(j) ∼ N (0, 	noise)) and are independent of the attenuation parameters x(j). Using the
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theory and the likelihood model that were given in sections 3.1, 3.2, part I of this paper, the
posterior density for the j th two-dimensional problem assumes the form

p(x(j)|m(j), x̂(j−1)) ∝ p+(x
(j)) exp(−F(x(j), x̂(j−1))) (8)

where

F(x(j), x̂(j−1)) = 1
2‖m(j) − Ax(j)‖2

	−1
noise

+ αTV(x(j)) + γ ‖x(j) − x̂(j−1)‖L1 . (9)

As was explained in section 3.1, part I of this paper, the posterior density constitutes the
complete solution of the inverse problem in the statistical sense. To summarize and visualize
the statistical solution of the inverse problem one needs to compute different statistics from
the posterior distribution. Most common choices include the maximum a posteriori (MAP)
and conditional mean (CM) estimates, covariance/correlation matrices and marginal densities
together with confidence intervals (Gamerman 1997, Gilks et al 1996, Kaipio et al 2000). In
the following, we explain the computation of the MAP estimate and then the computation of
other, integration based posterior statistics using MCMC methods is briefly discussed.

3.2. Computation of the MAP estimate

The most usual estimate from the posterior is the maximum a posteriori (MAP) estimate
which is defined through the relation

p
(
x

(j)

MAP|m(j), x̂(j−1)
) = max(p(x(j)|m(j), x̂(j−1))).

As discussed in section 3.5, part I of this paper, the computation of the MAP estimate from
the posterior density in equation (8) amounts to finding the parameter vector that satisfies

x
(j)

MAP = arg min
x(j)�0

F(x(j), x̂(j−1))

where F(x(j), x̂(j−1)) is as in equation (9). We intend to find the estimate x
(j)

MAP by applying
gradient based optimization methods. However, here we face two difficulties. First, the total
variation and L1-prior functionals are non-differentiable, due to the presence of the absolute
value function. To overcome this problem, we use the smooth approximation

|t| ≈ hβ(t) = 1

β
log(cosh(βt)) (10)

where β > 0 is a parameter adjusting the accuracy of the approximation. The approximation
hβ(t) with the value β = 200 (that is used in this study) and the absolute value function |t|
are shown between the interval t ∈ [−0.10.1] in figure 6.

Using the approximation (10), the approximate total variation is obtained as

TVβ(x(j)) =
Ne∑
k=1

lkhβ

(
�T

k x
(j)

)
(11)

and the approximate L1-norm, which we denote by L1
β(·), is obtained as

L1
β(x(j) − x̂(j−1)) =

M∑
k=1

|�k|hβ

(
x

(j)

k − x̂
(j−1)

k

)
. (12)

Using these approximations for TV and L1-functionals, the objective functional (9) is
approximated by a differentiable functional of the form

Fβ(x(j), x̂(j−1)) = 1
2‖m(j) − Ax(j)‖2

	−1
noise

+ αTVβ(x(j)) + γL1
β(x(j) − x̂(j−1)). (13)
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–0.1 0 0.1
0

0.1

Figure 6. Absolute value function |t| (solid line) and the approximation hβ(t) (dashed line),
equation (10), of the absolute value function in the interval t ∈ [−0.1, 0.1]. In the approximation
hβ(t), value β = 200 was used.

Referring to the results about singularities that are reconstructable from limited-angle data
(Quinto 1993) (see also the review in section 2, part I of this paper), we show in appendix B
that the MAP estimate with the TVβ-prior does not destroy any of these singularities. In
other words, one can expect to see in the MAP estimate with the TVβ-prior at least the same
singularities that are seen in backprojection reconstruction.

The second problem in the computation of the MAP estimate comes from the positivity
constraint which is due to the positivity prior p+(x

(j)). To take the positivity prior into account,
we use an exterior point search (Fiacco and McCormick 1990). In the exterior point search,
the original constrained problem is approximated by a sequence of unconstrained problems

x
(j,t)

MAP = arg min{Fβ(x(j), x̂(j−1)) + ϒ(t)(x(j))} (14)

where ϒ(t)(x(j)) is a penalty functional that is used to penalize the negative components
of the solution x(j) and the superindex x(·,t) refers to the t th problem in the sequence of
{t = 1, . . . , P } unconstrained problems. Using a suitably chosen sequence of penalty
functionals {ϒ(t)(x(j)), t = 1, . . . , P }, the exterior point method forces the sequence of
solutions

{
x

(j,t)

MAP, t = 1, . . . , P
}

(asymptotically) to the feasible region x(j) � 0. Then, the

solution of the constrained problem is approximated by x
(j)

MAP ≈ x
(j,P )

MAP .
In this paper we use a penalty functional ϒ(t) of the form

ϒ(t)(x(j)) =
M∑

k=1

φ(t)
(
x

(j)

k

)
(15)

where

φ(t)
(
x

(j)

k

) =
{

ςt

(
x

(j)

k

)2
x

(j)

k < 0

0 x
(j)

k � 0
(16)

and {ςt , t = 1, 2, . . . , P } is a sequence of increasing positive numbers.
In this study the MAP estimates (14) are computed using the gradient-based Barzilai–

Borwein method (Barzilai and Borwein 1988).

3.3. The gradient descent method of Barzilai and Borwein

We briefly describe here the gradient-based method for unconstrained large-scale optimization
introduced by Barzilai and Borwein (1988). We chose this method based on the facts that (i)
the inversion of Hessian matrix is excessively heavy task due to the large dimension (M ) of the
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problem and (ii) the computation of the gradient for the objective functional (14) is relatively
cheap, enabling relatively fast computation of multiple iterations. Further, gradient based
methods are advantageous also in the sense that a more accurate approximation (larger β)
for absolute value function can be used. This is due to the fact that we do not need to invert
matrices that contain second derivatives of hβ(t).

In the following, we use the notation x(j,t,�) to denote the �th iterate for the t th problem
in the sequence of unconstrained problems for the j th slice.

For the problem (14), the Barzilai–Borwein iteration can be written as

x(j,t,�+1) = x(j,t,�) − a−1
� d(j,t,�) (17)

where the search direction is of the form

d(j,t,�) = ∇Fβ(x(j,t,�)) + ∇ϒ(t)(x(j,t,�)) (18)

and the step-length parameter a� is computed as

a� = (x(j,t,�) − x(j,t,�−1))T(d(j,t,�) − d(j,t,�−1))

(x(j,t,�) − x(j,t,�−1))T(x(j,t,�) − x(j,t,�−1))
. (19)

The vector ∇Fβ(x(j)) in equation (18) is of the form

∇Fβ(x(j,t,�)) = −AT	−1
noise(m

(j) − Ax(j,t,�)) + α∇TVβ(x(j,t,�)) + γ∇L1
β(x(j,t,�) − x̂(j−1))

(20)

where the elements of the vector ∇TVβ ∈ R
M are obtained as

(∇TVβ(x(j,t,�)))m =
Ne∑
k=1

lkh
′
β(�kx

(j,t,�))�k,m (21)

and the elements of the vector ∇L1
β ∈ R

M are obtained as(∇L1
β(x(j,t,l) − x̂(j−1))

)
m

= h′
β

(
x(j,t,�)

m − x̂(j−1)
m

)|�m|. (22)

In equations (21), (22) h′
β(·) denotes the first derivative of hβ(·). The entries of the vector

∇ϒ(t)(x(j,t,�)) are of the form

(∇ϒ(t)(x(j,t,�)))m = 2ςt

(
x(j,t,�)

m

)
I
(
x(j,t,�)

m < 0
)

(23)

where I
(
x

(j,t,�)
m < 0

)
denotes the indicator function for the event x

(j,t,�)
m < 0.

3.4. Markov chain Monte Carlo methods

Whereas the computation of the MAP estimate is an optimization problem, the computations
of other usual posterior statistics are problems of integration over a high dimensional parameter
space. As discussed in part I of this paper, these tasks necessitate the use of Monte Carlo
integration techniques in the case of non-Gaussian posterior density, such as the density
function given in equations (8), (9).

The basic idea in Monte Carlo integration is to generate a large, representative ensemble
{x(j,�), � = 1, 2, . . . , S} ⊂ R

M of random ‘sample images’ from the posterior density
p(x(j)|m(j), x̂(j−1)) and then approximate the integral of function f (x(j)) with respect to
the posterior distribution by the sample mean, that is,∫

R
M

f (x(j))p(x(j)|m(j), x̂(j−1)) dx(j) ≈ 1

S

S∑
�=1

f (x(j,�)). (24)



1476 V Kolehmainen et al

Often the posterior models for inverse problems, such as the model given by equations (8), (9),
are such that direct drawing of independent sample images is impossible. In Markov chain
Monte Carlo (MCMC) methods the representative ensemble of (dependent) sample images is
obtained by generating a realization of a Markov chain which has its stationary distribution
defined by the given posterior density (Gilks et al 1996, Gamerman 1997). A more detailed
discussion on MCMC methods is given in section 3.6, part I of this paper.

In the case of x-ray tomography the large dimension (M > 104 for a 2D slice) of the
parameter space R

M makes the MCMC sampling computationally a very demanding task.
However, in order to give an illustrative example of more ‘complete’ statistical inference from
the posterior distribution, we carry out MCMC analysis for the posterior distribution of one
two-dimensional problem (i.e., for one slice x(j)) in the first test case, which is the limited-angle
problem with data from the tooth phantom. The development of efficient MCMC schemes
that can be used to carry out inference for 3D reconstruction problems is left to future studies.

4. Results

4.1. Limited-angle tomography from sparse projection data of a tooth

As the first example of data type (A), see section 1, we consider the model problem of
limited-angle tomography with sparse projection data (nine projections from view-angle of
68◦) from a tooth phantom. As was discussed in section 2.2, the projection images from the
tooth phantom were collected using the conventional CT geometry instead of using the fixed
detector geometry, which is more typical geometry in clinical dental studies. However, the
results for limited-angle tomography in these two geometries are qualitatively very similar.
We chose to use the conventional CT geometry in order to get full-angle reconstructions as
the ‘ground truth’ for the limited-angle reconstructions in this test problem. The experimental
setup is explained in detail in section 2.2.

Results are shown in figures 7 and 8. The left column in figure 7 shows MAP estimates
x

(j)

MAP for four slices with full-angle data that were collected from view-angle of 187◦ with
projection intervals of 8.5◦ (23 projections). With this set of projection images the size of
the data vector m(j) for each two-dimensional problem is N = 15 272. Figure 3 shows one
slice m(j) of this data in a traditional sinogram form. It should be noted that if the vector
m(j) contains values that correspond to the rounded corners of the detector, these values are
neglected simply by removing respective rows from m(j) and A.

The domain � in the computation of the two-dimensional images shown in figure 7 was a
26 × 26 mm2 square which was divided into a regular M = 166 × 166 = 27 556 pixel lattice,
leading to a pixel size of ∼0.16 × 0.16 mm2.

The left column of figure 8 shows four vertical slices of the (approximate) three-
dimensional reconstruction with the full-angle data. The three-dimensional reconstruction
was obtained as a stack of Nsli = 600 two-dimensional reconstructions. Each of the two-
dimensional slices represents 0.045 mm thick slice of the three-dimensional data, leading to a
vertical size of 26.1 mm for the images in figure 8. The horizontal size of the images in figure 8
is the same as in figure 7, that is, 26 mm. Note that the first and fourth slices in figure 8 are
chosen approximately from the front and back surfaces of the tooth.

The MAP estimates with the full-angle data, left columns of figures 7 and 8, are based on
the statistical model described in section 3.1. For the covariance matrix 	noise of the observation
errors we used the trivial choice 	noise = σ 2

n I , i.e., we assumed that the noise is statistically
independent Gaussian noise with equal variance in each direction. The noise variance σ 2

n

was estimated from the projection data. This was achieved by taking one approximately



Statistical inversion for medical x-ray tomography with few radiographs: II 1477

Figure 7. Left column shows MAP estimates x
(j)

MAP from full-angle data with the TVβ -prior
as the ‘ground truth’. The full-angle data consisted of 23 projections from total view-angle of
187◦ (projection interval 8.5◦). The other two columns show MAP estimates with the TVβ -prior
(centre column) and tomosynthetic reconstructions (right column) from limited-angle data. In the
limited-angle case, nine projections from view-angle of 68◦ were used.

homogeneous ‘air-only’ sample (100 × 50 detector pixels) from one transformed projection
image, and then computing estimate for σ 2

n based on this sample. As a result, we had value
σ 2

n = 0.0004. In practice, a better estimate for the noise statistics can be obtained from a
repeated set of phantom measurements and/or careful analysis of the measurement system.
The determination of the accurate noise statistics for the Sigma sensor and the assessment to
which extent the reconstruction results improve using a better noise model, are left to future
study. The analysis given in section 3.2, part I of this paper suggests, however, that the
Gaussian approximation is acceptable.

The prior parameters were chosen by visual inspection from a set of reconstructions
with different parameters. With the full-angle data we used α = 1250, γ = 1250 and
{ςt, t = 1, 2, . . . , 5} was a linearly increasing sequence from 12 500 to 3.75 × 105. The
parameter β in the approximation (10) for the absolute value function was β = 200. The
MAP estimates were computed using the Barzilai–Borwein method. We computed six iteration
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Figure 8. Left column shows vertical slices of the (approximate) 3D reconstruction from full-
angle data (23 projections from view-angle of 187◦) with the TVβ -prior as the ‘ground truth’. The
other two columns show 3D reconstruction with the TVβ -prior (centre column) and tomosynthetic
reconstruction (right column) from limited-angle data. In the limited-angle case, nine projections
from view-angle of 68◦ were used.

steps for each problem in the sequence of five unconstrained problems and then the result from
the fifth unconstrained problem was used as an approximation for the MAP estimate x

(j)

MAP.
The second columns in figures 7 and 8 show respective slices of an approximate 3D

reconstruction with limited-angle data that were collected from view-angle of 68◦ with
projection intervals of 8.5◦ (nine projections). The size of the data vector m(j) for each
slice was N = 5976. The right image in figure 3 shows this 68◦ part of the data, that was
used in limited-angle computations, for one slice in sinogram form. The prior parameters in
the limited-angle case were the same as in the full-angle reconstruction. The right columns in
figures 7 and 8 show the respective slices for a tomosynthetic (backprojection) reconstruction
from the same limited-angle data with view-angle of 68◦. For details of the tomosynthesis,
see Webber (1998), Grant (1972), Ziedses des Plantes (1932).

As can be seen from figures 7 and 8, the limited-angle MAP estimates with our statistical
model are good in this test problem. Further, the statistical reconstructions are sharper and
clearer than the traditional tomosynthetic reconstructions. This is especially evident in the
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Figure 9. Statistical inference from the posterior distribution for one slice of the tooth data. Nine
projections from view-angle of 68◦ were used as the data. Left: MAP estimate with the (smooth)
TVβ -prior. Right: CM estimate with the original TV-prior.

depth direction where the information content of the limited-angle projection data is poor.
This clear difference in the images gives an illustration for the effect of well-chosen prior
model in limited-angle tomography. Also, note that the tomosynthetic reconstructions give
an experimental illustration for the analysis about features that are reconstructable based on
limited-angle projection data in Quinto (1993). A brief review of this analysis is given in
section 2, part I of this paper. Given figure 7, see also figure 3 in part I of this paper.

We note that the test case in figures 7 and 8 is unrealistic (from the clinical point of view)
in the sense that the tooth phantom had no surrounding tissue whereas in practical situations
this is always the case. However, the purpose of this example was to test the performance of
our statistical model for limited-angle tomography with sparse projections without the added
complications coming from the local tomography geometry. We consider a more realistic and
complicated case in section 4.3, in which we consider reconstruction from limited-angle data
that was collected from a head phantom.

4.2. Example of MCMC analysis for the tooth data

To give an illustrative example of more complete Bayesian inference, we conducted MCMC
analysis for one slice x(j) of the limited-angle data that was used in section 4.1. Since the
MCMC analysis was conducted for only one slice, the coupling prior density pL1(x

(j)|x̂(j−1))

was not included in the posterior model.
The MAP estimate x

(j)

MAP for the chosen slice with the approximate TVβ-prior is shown
in the left image in figure 9. The MAP estimate was computed using the Barzilai–Borwein
method. The parameters α, σ 2

n of the posterior density, the smoothing parameter β for the
approximation of absolute value function and the extrior point search parameter sequence {ςt}
were the same that were used in the previous section.

Using the (approximate) MAP estimate as the initial state in the simulation, we generated
an ensemble of 15 000 sample images using the Gibbs sampler (Geman and Geman 1984).
For more detailed discussion on Gibbs sampling, see section 3.6, part I of this paper. It should
be noted that the Gibbs sampler algorithm samples the original posterior model without any
approximations to the TV and positivity priors. Detailed description of a similar algorithm
that was applied to electrical impedance tomography problem can be found in Kaipio et al
(2000), Kolehmainen (2001).
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Figure 10. Statistical inference from the posterior distribution for one slice of the tooth data. Nine
projections from view-angle of 68◦ were used as the data. Top left: estimated posterior variance
for each pixel (i.e., the diagonal entries of the posterior covariance matrix). Top right and bottom:
marginal densities of single pixels, which are marked in the variance image. Solid line denotes
the conditional expectation, dashed lines the 90% confidence limits and the dotted line the initial
value (approximate MAP value found by the Barzilai–Borwein method with TVβ -prior).

The image on the right in figure 9 shows the conditional mean estimate x
(j)

CM computed
as ergodic average based on the simulated Markov chain, see equation (24). The left image
in the top row of figure 10 shows the estimated variances for each pixel, that is, the diagonal
entries of the posterior covariance matrix. Note that the largest uncertainty in the posterior is
in the directions corresponding to the pixels located at the boundaries of the tooth. The other
plots in figure 10 show the marginal posterior densities of single pixels marked in the variance
image.

The proper interpretation of the results in figures 9 and 10 requires care. For example,
given a set of 100 realizations of the projection data from the same model, one would be
tempted to say that (roughly) in 90 cases the 90% confidence limits would include the true
value of the x-ray attenuation coefficient.

However, this interpretation would be incorrect. The key point here is that the posterior
distribution reflects our uncertainty based on the (i) projection data and (ii) the prior
information. The pitfall here is that the true attenuation coefficient may have small probability
with respect to the postulated prior model. The ill-posedness of the problem with sparse
tomographic data necessitates that the priors are informative with respect to certain subspaces
from which the likelihood (i.e. the projection data) carries only little information. This
problem is reflected in the fact that the results are usually sensitive to the selection of the
prior. Summarizing, the confidence limits are reliable only in relation to our confidence in the
chosen prior. Thus, the choice and careful construction of the prior model is a crucial step in
statistical inversion. See also the discussion about visualization of priors in section 3.4, part I
of this paper.
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Figure 11. Left: raw 664 × 872 projection image from the head phantom (black corresponds to
high counts). Middle: detected pixel values for the 300th row of the projection image. Right:
sinogram for the 300th horizontal slice. The data consisted of seven projections that were collected
from 59.7◦ angle of view. Note that the sinogram does not go to zero from the lower side. This
reflects the fact that the problem has features of local tomography.

4.3. Limited-angle reconstruction of the head phantom

As the second test problem for limited-angle tomography for data type (A), we consider
reconstruction based on sparse truncated projection data from a head phantom. Using the
measurement setup that is explained in section 2.3, seven projection images were taken with
approximately equal projection intervals from total view-angle of 59.7◦. This represents
roughly the maximum view-angle that can be used in practice. Left image in figure 11 shows
one raw projection image from this dataset, the middle image shows one row of detected pixel
values from the projection image and the right image shows one slice m(j) of the transformed
data in sinogram form. The size of the vector m(j) is N = 6104. The projection images were
transformed to line integral data with the approximation explained in section 2.1. With the
fixed detector geometry used in this example this means that the possible angular dependency
of the efficiency of the Sigma detector is neglected.

Projection angles were computed based on the images of the reference ball that was
attached in front of teeth with a distance of 14 mm from the detector array. This metal ball is
seen above the middle tooth in left image in figure 11. The shift of the ball in the projection
images was measured, and using this information and known ball-detector distance the angles
were obtained by simple trigonometric relations.

Note that in this more realistic example, all the teeth that are imaged are not visible in all
projection images. This is also evident from the sinogram which is truncated from the lower
side (i.e., it does not go to zero in the lower side). Thus, in addition of being a limited-angle
case, the problem contains features of local tomography problem.

The results for the head phantom case are shown in figure 12. The left column shows
four vertical slices of a tomosynthetic reconstruction and the right column shows respective
slices of an approximate 3D reconstruction that was obtained as stack of Nsli = 664 two-
dimensional MAP estimates with the TVβ-prior. In the computation of the 2D slices, the
width of the two-dimensional rectangular domain � ⊂ R

2 was 61.25 mm and the depth was
25 mm, respectively. The domain � was divided into a M = 400 × 160 = 64 000 pixel grid,
leading to a pixel size of 0.153 × 0.156 mm2 (width × depth). The MAP estimates were
computed using the methods described in section 3. The posterior parameters were the same
as in section 4.1.

As can be seen, the statistical approach with the TVβ-prior yields good reconstructions in
this more realistic and difficult test case. The effect of well-chosen prior is also seen clearly in
figure 12: statistical inversion can capture relatively accurately the three-dimensional structure
of the teeth despite the poor depth information content of the limited-angle projection data.
Further, slices from the statistical reconstruction are sharper than tomosynthetic slices.
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Figure 12. The left column shows four vertical slices of a tomosynthetic, or backprojected,
reconstruction from limited-angle data (seven projections from 59.7◦ view-angle). The right
column shows respective slices of an approximate 3D reconstruction with the TVβ -prior from the
same data.

Figure 13. Full-angle (204◦) reconstructions using different numbers of projections. Columns
from left to right: 25 projections (projection interval 8.5◦), 13 projections (17◦), 7 projections
(34◦) and 5 projections (51◦). Top row: filtered back projection. Bottom row: MAP estimates
with the TVβ -prior.

4.4. Full-angle tomography with sparse projection data

As the first test problem for data type (B) we consider full-angle global tomography problem
with sparse projection data. The data were collected with same imaging geometry that is
explained in section 2.2 and from the same tooth phantom that was used in section 4.1.

The results for this example are shown in figure 13. Each image is a reconstruction of
the same two-dimensional slice. The domain � and the number of pixels in the images are
the same as in figure 7, that is, the domain is 26 × 26 mm2 and the number of pixels is
M = 166 × 166 = 27 556 with pixel size 0.16 × 0.16 mm2. The data that were used for the
reconstructions in the first column of figure 13 were collected from a view-angle of 204◦ with
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regularly spaced projection intervals of 8.5◦ (total 25 projections, size of data vector m(j) is
N = 16 600). In the second column, the total view-angle was the same but only 13 regularly
spaced projections were used, leading to a projection interval of 17◦ (N = 8632). In the third
column number of projections was 7 with projection interval of 34◦ (N = 4648) and in the
fourth column the number of projections was 5 with projection interval of 51◦ (N = 3320).

The top row shows reconstructions with the filtered back projection (FBP) algorithm and
the bottom row MAP estimates with the same statistical model that was explained in section 3
and used in figures 7 and 8. The noise covariance and prior parameters for the statistical
method were the same as were used in figures 7 and 8.

For the FBP reconstructions, the 664 element projection data vectors for each slice were
averaged into bins of four data points, leading to data vector of 166 elements in each projection.
With this operation, the pixel size for the FBP reconstruction becomes the same that was used
in the statistical approach. Further, this operation improves the signal-to-noise ratio in the
data for FBP, leading to less noisy reconstructions with the cost of reduced resolution. To
de-emphasize the effects of (high-frequency) observation noise, Hanning-window was applied
to the filtering of the projections in the frequency domain. Nearest-neighbour interpolation
was used in the backprojection process. For details on theory and implementations of FBP
methods, see e.g. Kak and Slaney (1988), Natterer (1986) and references therein.

As can be seen from figure 13, the statistical approach provides good reconstructions of
the tooth. The MAP estimate in the second column with projection interval 17◦ is almost
as good as the first one with projection interval of 8.5◦. Whereas the MAP estimate in the
third column (projection interval 34◦) provides useful information about the shape and size of
the tooth, the fourth one (angular projection interval 51◦) gives only a crude approximation
for the size and shape of the target. Also, it can be seen that the MAP estimates with the
statistical model are less noisy than the reconstructions with the FBP method. It is evident from
figure 13 that the statistical approach is more robust against large projection interval than the
FBP method.

4.5. Local tomography from sparse projection data

As the last test case we consider a realistic example of extra-oral imaging using full-angle sparse
projection data from a jaw bone phantom. This is an example of data type (B) with truncated
projections. The cone beam measurement geometry for these experiments is illustrated in
figure 5. Using the experimental setup explained in section 2.4, we took 23 equally spaced
projection images with total view-angle of 187◦ (projection interval 8.5◦) from the jaw bone
phantom. Three of these projection images are shown in figure 14. Referring forward to the
results in figure 15, the projection image on left in figure 14 was taken from the direction
of positive x-axis (i.e. from right to left) with respect to the reconstructed slice. The other
two projections images in figure 14 are from angles of 76.5◦ and 153◦ to counterclockwise
direction with respect to the positive x-axis in the reconstructed slice, respectively.

The left image on bottom row in figure 14 shows one slice of this projection data in
sinogram form. In the sinogram that is shown in the right image on the bottom row, only 12
projections with projection interval of 17◦ were used. As can be seen from figure 14, this test
case leads to local tomography problem with full-angle sparse projection data.

The results for this example are shown in figures 15 and 16. In figure 15 each image is
a reconstruction of the same two-dimensional slice. The domain � ⊂ R

2 in the images is
78 × 78 mm2 square which was divided into a regular M = 498 × 498 = 248 004 pixel lattice
with pixel size 0.156 × 0.156 mm2. The data that were used for the reconstructions in the top
row of figure 15 were collected from a view-angle of 187◦ with regularly spaced projection
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Figure 14. Top row: three 872 × 664 projection images from the jaw phantom. The images
are (approximately) from orthogonal directions. Bottom row: sinograms for one slice of the jaw
phantom data with projection intervals of 8.5◦ (left) and 17◦ (right). The projection images and
the sinograms reveal clearly the local tomography nature of the reconstruction problem.

Figure 15. Reconstructions from local sparse projection data (total view-angle of 187◦) from
the jaw bone phantom. Top row: 23 projections with projection interval of 8.5◦. Bottom row:
12 projections with projection interval of 17◦. Columns from left to right: �-tomography,
tomosynthesis (backprojection) and MAP estimates with the TVβ -prior.

intervals of 8.5◦ (total 23 projections, number of data N = 15 272). In the bottom row, the
total view-angle was the same but only 12 regularly spaced projections were used, leading to
a projection interval of 17◦ (N = 7968).

The left column shows reconstruction with the �-tomography, middle column the
tomosynthetic (backprojection) reconstructions and the right column MAP estimates with
the statistical model that was explained in section 3 and used in earlier test cases.
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Figure 16. Regions of interest (ROI) from the local tomography reconstructions in figure 15.
Rows and columns are as in figure 15.

The parameters for the statistical method were the same that were used in figures 7 and 8.
The idea of �-tomography is discussed briefly in appendix A.

Figure 16 shows the central part (166 × 166 pixels) that includes the region of interest
(ROI) for the respective reconstructions in figure 15.

As can be seen from figures 15and 16, the MAP estimates with the TVβ-prior are relatively
good also in this difficult test problem of extraoral imaging. When using all the 23 projections,
the structure of the teeth that are located in the region of interest was recovered with good
accuracy. In the case of using only 12 projections with projection interval of 17◦, the structure
of the same teeth was recovered with almost as good accuracy. A notable and typical local
tomography feature in the reconstructions is the ‘back projection artefact’ type details outside
the region of interest. These are evidently due to tissues that are visible possibly only in one
or two projection images. Also, as can be seen from figures 15 and 16, the images that are
based on the statistical approach are better than the traditional backprojection reconstructions
or the �-tomography reconstructions. Based on figures 15 and 16, it seems that the statistical
model would be useful in clinical studies of extraoral imaging.

5. Conclusions

Consider the following example of three-dimensional x-ray imaging. A dentist wants to
know whether the roots of a certain tooth are close to the inferior dental canal. He takes,
say, five digital intraoral projection radiographs using an x-ray source and a digital intraoral
x-ray sensor choosing the directions of the images so that the images of the roots and the
nerve canal are clearly separate in some of the images. The projection images together with
knowledge of imaging geometry are given as input to a reconstruction algorithm. Resulting
three-dimensional reconstruction is examined on computer screen and the diagnostic question
answered.

The above type of three-dimensional imaging is not standard practice today. One reason
for this is the lack of a flexible, fast, high-quality reconstruction algorithm for such imaging.
It is evident from part I of this paper that such an algorithm should be able to use a priori
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information of the tissue to compensate for the incomplete information provided by a few
radiographs.

In this paper, we proposed a novel statistical model to three-dimensional dental x-ray
imaging with sparse projection data. In the model, the three-dimensional reconstruction
problem is approximated with a stack of two-dimensional problems. Our model for a priori
information includes total variation and positivity priors for each two-dimensional slice, and
the three-dimensional nature of the problem is taken into account through a coupling L1-prior
between consecutive slices. A gradient-based optimization method was implemented for the
computation of the MAP estimates and a MCMC algorithm for the computation of point
estimates that necessitate integration. The performance of the model was evaluated based
on in vitro projection data that were collected using an x-ray source and an intraoral CCD
detector from a dentist’s regular equipment. Reconstructions with traditional reconstruction
methods were given as reference for the estimates with the statistical model. Four different
test cases with sparse projection data were considered. It was seen that the statistical approach
gave good results in all test cases. Furthermore, the statistical model gave improvement over
traditional methods in all cases. Thus, the proposed statistical model seems promising for 3D
imaging of dentomaxillofacial structures with sparse projection data.

In this study, the approximation of the three-dimensional problem by a stack of two-
dimensional problems was made due to heavy computational demands of purely three-
dimensional case. The computation of the approximate 3D reconstruction with the statistical
method in figures 7 and 8 took approximately 6 h using MatLab (version 6) on a PC with
a 1 GHz Pentium processor (number of unknowns for each 2D slice M = 27 556). The
computation time for the respective 3D TACT reconstruction with the same equipment was
4 min. For the reconstructions in figure 12 the respective computation times were
approximately 8 h for the statistical method and 6 min for TACT (number of unknowns
for each 2D slice M = 64 000). Although the computation times are long with the MatLab-
implementation, we believe that the computation times can be reduced to a clinically acceptable
level with a sophisticated implementation on a more basic level programming platform.
Preliminary tests with an optimized code give computation times less than 10 min for the
reconstruction of 3D volume with clinically acceptable resolution.

The computation of the purely three-dimensional reconstructions (number of unknowns
M 
 106) with our current implementation and devices is not possible due to the excessive
memory requirement of matrix A. However, the extension of the methods to purely 3D
reconstruction is one of the main topics in the future work. This work is under way.

The development of more effective MCMC codes is also a topic of future work. These are
more likely to be realizable in cases in which the prior model and structure of the tissue can
be well described in a lower dimensional parametric basis. The approximations of different
tissues by low dimensional parametric models are one topic of future work.

We also wish to start in vivo tests with the proposed approach in the near future. In
addition to dental imaging, we believe that the proposed statistical model can also prove to be
useful in other applications with ‘level set’ type targets.
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Appendix A. Λ-tomography

A traditional reconstruction method that has been developed for local tomography is the so-
called �-tomography. As in the main body of this paper, let s ∈ � ⊂ R

2 denote the position
vector and x: � �→ [0,∞) denote the x-ray attenuation coefficient function. The idea of
�-tomography is based on the result that it is possible to recover �x, where � is a Calderón
operator, instead of the attenuation coefficient x itself from continuous local full-angle data
(Smith and Keinert 1985, Kuchment et al 1995, Faridani et al 1992, 1997).

The Calderón operator � is defined using the Fourier transform as

�̂x(ξ) = |ξ |x̂(ξ)

where x̂(ξ) = ∫
R

2 exp(−isξ)x(s) ds for any ξ ∈ R
2. This is satisfactory since � acts very

much like a differential operator and enhances jumps (edges) of x. Further, it does not introduce
sharp artefacts, only blurred ones. However, values of the attenuation coefficient x cannot be
read from �x, only the jumps are faithfully recovered.

The following reconstruction formula is due to Smith and Keinert (1985), see also Faridani
et al (1992). We follow the notation of (Bingham (1998), formula (3.33)) and write the
reconstruction formula as

e ∗ (�x) = C

∫ 2π

0

∫ 2π

0
�Pθe(Eθ(s − a))(Dax(θ) + Dax(−θ))|a · �θ | dφ dθ (A.1)

where a = a(φ) = R(cos φ, sin φ) is the location of the x-ray source, C is a constant, e is
a smooth point spread function that approximates the Dirac delta function, � is the Laplace
operator, Pθ is the parallel beam tomographic data (i.e., transformed projection radiograph),
angle θ defines a unit vector �θ = (cos(θ), sin(θ)) which in turn specifies the propagation
direction of the x-rays (travelling from point a to direction θ̂ ), Da is the divergent beam
(or fan-beam) tomographic data, �θ is a unit vector parametrized by angle θ , Eθ is orthogonal
projection onto �θ⊥ and ∗ denotes two-dimensional convolution.

The use of the point spread function e eliminates infinite values of �f . Let e: R
2 → R

be the radial function defined by

e(r) =
{

π
5 (r + 1)4(r − 1)4 for 0 � r � 1
0 for 1 < r.

(A.2)

Note that
∫

e = 1. The function �Pθe can be computed explicitly.
In the �-tomography reconstruction shown in figure 15, the size of the square domain is

78 × 78 mm2 and the radius of the point spread function in (A.2) is 1 mm. The number of
x-rays in each projection was 664.

Appendix B. Reconstruction of singularities with the TVβ-prior

In this appendix we consider singularities appearing in the MAP estimate with the TVβ-prior.
The purpose is to show that the TVβ-prior does not destroy any of the singularities that are
reconstructable based on the limited-angle data alone.

We consider the continuous model, where x = x(s) is the attenuation function defined in
domain � ⊂ R

3 and the measured data correspond to the line integrals

m(L) = Ax(L) + ε(L) Ax(L) =
∫

L

x(s) ds.

Here the variable L is a line connecting a source to detector D, where D is assumed to be a
subset of a plane. The line L is assumed to hit the detector D non-tangentially. We denote
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by G the open set of lines L along which we can do measurements and introduce coordinates
on G by using the point (ζ1, ζ2) ∈ D where L intersect D and two angles (α1, α2) related to
the direction of the line L. Then A defines a continuous operator A: L2(�) → L2(G) where
G has a measure µ = dζ1 dζ2 dα1 dα2. This operator has adjoint A∗: L2(G) → L2(�). The
composition of these operators defines the unfiltered backprojection operator A∗A: indeed,
using unfiltered backprojection algorithm with limited-angle data m = Ax corresponds to
computation of A∗Ax (Natterer 1986).

It is well known that certain singularities of x can be seen in backprojection algorithm
(Quinto 1993), see also the review in section 2, part I of this paper. For instance, assume that
function x has a jump across surface S. If some line L ∈ G is tangent to the surface S at point s,
then the backprojection reconstruction A∗Ax is also singular at point s (in fact, the singularity
is not as strong as the original singularity).

Mathematically speaking, we say that the pair of a point s and a direction ξ is in the
wave-front set of function x if the function x is singular at point s in direction ξ . This is
denoted by (s, ξ) ∈ WF(x) (for precise definition, see Hörmander (1990)). For instance, if
x is a piecewise smooth function that jumps across a surface S, then the wave-front set of x
consists of pairs (s, ξ) where s ∈ S and ξ is a normal vector of S at s. The points s which
do not have a neighbourhood where x is infinitely differentiable are called singular points and
their set is called singular support of x and denoted by singsupp(x).

Let now H ⊂ � be a set of those points s for which there is (s, ξ) ∈ WF(x) such that ξ

is orthogonal to some line L ∈ G. In other words, H ⊂ singsupp(x) is the set of those points
where some measurement line is tangent to a ‘jump’ of function x. We call H the set of the
observable singularities.

It is known that the backprojection algorithm can reconstruct observable singularities,

H ⊂ singsupp(A∗Ax)

see e.g. Quinto (1993). Next we show that the same property is true for MAP reconstruction
with TVβ-prior. Assume that we have obtained (virtually errorless) measurements from an
attenuation function x0 ∈ L2(�). This means that we are given m = Ax0.

We recall that the MAP estimate is obtained from the minimization problem

min
x

F (x)

where x is compactly supported function in � ⊂ R
3 and

F(x) =
∫

G

(Ax(L) − m(L))2µ(dL) +
3∑

j=1

∫
�

hβ(∂jx(s)) ds

where ∂j x = ∂x
∂sj

are partial derivatives of x(s) and hβ is defined by equation (10). Let x be
the function which minimizes F(x). Then the first variation of F, which we next compute,
must vanish at x. Let v be a function which vanishes in ∂�. Then using integration by parts,

lim
t→0

F(x + tv) − F(x)

t
=

∫
G

2(Ax − m)(L)Av(L)µ(dL) +
3∑

j=1

∫
�

h′
β(∂j x(s))∂jv(s) ds

=
∫

�

2A∗(Ax − m)(s) −
3∑

j=1

∂j (h
′
β(∂jx(s)))

 v(s) ds
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where h′
β is the derivative of the function hβ : R → R. Since x minimizes F(x), the above

integral has to vanish for any function v. Thus we see that minimizer x satisfies

2A∗Ax(s) −
3∑

j=1

∂j (h
′
β(∂j x(s))) = 2A∗m(s) = 2A∗Ax0(s).

Assume that s ∈ H . Then the right-hand side A∗Ax0 is not smooth. Thus, if the minimizer
x would be smooth at s, we see that the left-hand side should be smooth which would be a
contradiction. This shows that s ∈ H implies also s ∈ singsupp(x), that is,

H ⊂ singsupp(x).

In other words, at least all the discontinuities that are seen with the standard backprojection
method can be seen with approximative TV priors. Note that above computation does not say
anything about possible artefact singularities that may appear.
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