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Diagnostic and operational tasks in dentistry require three-dimensional (3D) information about tissue. A novel type of low dose dental
3D X-ray imaging is considered. Given projection images taken from a few sparsely distributed directions using the dentist’s regular X-
ray equipment, the 3D X-ray attenuation function is reconstructed. This is an ill-posed inverse problem, and Bayesian inversion is a well
suited framework for reconstruction from such incomplete data. The reconstruction problem is formulated in a well-posed
probabilistic form in which a priori information is used to compensate for the incomplete data. A parallelized Bayesian method
(implemented for a Beowulf cluster computer) for 3D reconstruction in dental radiology is presented (the method was originally
presented in (Kolehmainen et al., 2006)). The prior model for dental structures consists of a weighted l1 and total variation (TV)-prior
together with the positivity prior. The inverse problem is stated as finding the maximum a posterior (MAP) estimate. The
method is tested with in vivo patient data and shown to outperform the reference method (tomosynthesis).
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Bayes’sche Inversion für dreidimensionale Röntgentomografie in der Zahnmedizin.

Diagnostische und operative Zahnmedizin erfordert dreidimensionale (3D) Gewebeinformation. In diesem Beitrag wird eine neue Art der
schwachdosierten 3D-Röntgentomografie untersucht. Die Rekonstruktion der 3D-Dämpfungsverteilung erfolgt aus nur wenigen
Projektionen, die mit handelsüblichen Röntgenapparaten aufgenommen werden. Das inverse Problem ist als Bayes’sches Schätzproblem
formuliert, in dem a priori Information zur Kompensation der unvollständigen Messdaten berücksichtigt wird. Zur Lösung des inversen
Problems wird eine parallelisierte Bayes’sche Methode für 3D-Röntgentomografie (implementiert für einen Beowulf-Rechencluster)
vorgeschlagen. Diese Art der Rekonstruktion wurde in (Kolehmainen et al., 2006) präsentiert. Das verwendete A priori-Modell besteht aus
einer Kombination einer gewichteten (l1-prior, einer total variation (TV) prior und einer Positivitätsprior. Das inverse Problem kann als
Suche nach dem Maximum a posterior (MAP)-Zustand betrachtet werden. Die vorgeschlagene Methode wird anhand von In vivo-
Patientendaten getestet und zeigt eine signifikante Verbesserung gegenüber der üblichen Methode (tomosynthesis).
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1. Introduction

Several diagnostic and operative tasks in dentistry require precise

three-dimensional (3D) information of dental structures, and often

two-dimensional (2D) X-ray images are not sufficient. For example,

dental implantology is based on accurate measurements for the

optimal depth, size and angle of the screw hole. The hole should

be deep enough for firm attachment of the implant while avoiding

damage to the mandibular nerve or penetration to the maxillary

sinus. See (Brocklebank, 1997; Ekestubbe, Grondahl, Grondahl,

1997; Ramesh et al., 2002).

We consider a novel low dose 3D imaging modality for dental

implantology. It is intermediate between 2D X-ray imaging and full

data tomography: 3D imaging is based on a small number of projec-

tion images taken from limited angle of view. The projection data is

measured with a modified digital panoramic device; this is a major

advantage since virtually every dental clinic has a panoramic X-ray

device, making the modality well suited to the dentistry workflow

(see (http:==www.instrumentariumdental.com=, 2007)). As op-

posed to conventional CT data, we refer to the above type of limited

projection data as sparse projection data.

The reconstruction task is an ill-posed inverse problem because

sparse projection data does not contain sufficient information to deter-

mine the 3D structure of tissue, perfectly. It is well-known that tradi-

tional reconstruction methods, such as filtered backprojection (FBP), do

not perform well when applied to sparse projection data (Ranggayyan,

Dhawan, Gordon, 1985; Natterer, 1986; Hanson, 1987).

Bayesian inversion is a natural framework for reconstruction from

sparse projection data. A priori information about the tissues is used

to compensate for the incomplete data. For example, in dental X-ray

imaging we know that the attenuation function is a non-negative

function and that the dental structures consist of a few different

tissue types (soft tissue, bone, enamel) separated to a few roughly

homogeneous subregions with well-defined boundaries. The

unknown X-ray attenuation function and projection data are con-

sidered as random variables, and separate statistical models are

formulated for (1) the acquisition of the projection data and (2)

the a priori information. Bayes formula gives the complete solution

of the inverse problem in the form of posterior probability distribu-

tion, from which final images of the tissue are obtained as point

estimates. Bayesian methods give improved reconstruction quality

over traditional methods, see e.g. (Sauer, James, Klifa, 1994; Hanson,
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Wecksung, 1983; Bouman, Sauer, 1993; Frese, Bouman, Sauer, 2002;

Yu, Fessler, 2002; Siltanen et al., 2003; Kolehmainen et al., 2003).

A major practical difficulty in applying Bayesian methods to 3D

X-ray imaging is the heavy computational requirements. This is why

previous studies on the topic have mostly concentrated on 2D prob-

lems. If realistic resolution in a 3D problem is used, the number of

unknown voxel values is typically in the range 106–107, and thus the

computation of the posterior statistics leads to large-scale optimiza-

tion or integration problems. Powerful computers and efficient

numerical algorithms are required to compute the 3D reconstruction

in clinically acceptable time.

In this study, we present a Bayesian method for 3D reconstruction

in dental X-ray imaging with sparse projection data. The method

was originally proposed in (Kolehmainen et al., 2006). In the

Bayesian model we use a weighted l1 and total variation (TV) prior,

together with the positivity prior, as the prior model for the 3D X-ray

attenuation function of the dental structures. A parallelized version

of a gradient-based optimization method is implemented for the

computation of the maximum a posterior (MAP) estimate. The re-

sults are computed on a 13 node Beowulf cluster constructed for

this purpose. The performance of the method is tested with sparse

projection data collected using commercial panoramic dental X-ray

imaging equipment.

The parallelization of X-ray tomography problem has been pre-

viously discussed in (Zheng et al., 2000), where a parallelizable

version of an iterative coordinate-descent functional-substitution

(ICD=FS) algorithm for Bayesian MAP-estimation was derived.

2. Mathematical model

2.1 Forward model

Consider an X-ray source placed on one side of an object, through

which radiation passes and is detected on the other side by a digital

sensor (2D array of point-like detectors). See Fig. 1. The object is

modeled by a bounded subset � � R3 with a non-negative X-ray

attenuation function x : � ! ½0;1Þ. For the projection measure-

ment, we use the usual pencil-beam model

mj ¼ �log

�
Ij
Io

�
¼

ð
Lj

xðsÞds ð1Þ

where mj is the value of the projection measurement for the jth

source to detector pixel line Lj in the set of projection data, Ij is

the measured X-ray intensity and I0 is the intensity of the X-ray

source.

In the discretization of the attenuation model (1) the domain � is

divided into a lattice of M disjoint 3D voxels �i and the length of the

path Lj inside each voxel �i is computed, see Fig. 1. Assuming that

the attenuation function x(s) is constant within each voxel �i, the

projection measurement mj can be approximated in the form

mj ¼
ð

Lj

xðsÞds �
XM

i¼1

xi j�i \ Lj j ð2Þ

where j�i \ Lj j denotes the length of ray Lj through voxel �i . Arran-

ging the whole set of N projection measurements into a vector

m ¼ ðm1;m2; . . . ;mNÞT 2RN, we obtain

m ¼ Ax; ð3Þ

where x ¼ ðx1; x2; . . . ; xMÞT 2RM is the vector of attenuation values

in the voxels and matrix A implements Eq. (2).

2.2 Bayesian inversion

We consider the inverse problem as a problem of Bayesian inference.

All unknown variables are modeled as random variables. The prob-

abilistic modeling of these variables reflects our uncertainty of their

actual values and the degree of uncertainty is coded in their prob-

ability distribution models.

The posterior distribution

pðxjmÞ ¼ pprðxÞpðmjxÞ
pðmÞ ð4Þ

represents the complete solution of the inverse problem. In Eq. (4),

pðmjxÞ is the so-called likelihood function, pprðxÞ is the prior density

and pðmÞ is the normalization constant. The likelihood function

pðmjxÞ is a statistical model for the observations describing the

likelihood that the measured data m would have been observed

from a given realization x. The prior density pprðxÞ is statistical model

for the unknown x. It is designed based on the a priori information

about the object. In this work we compute the MAP estimate

pðxMAPjmÞ ¼ max pðxjmÞ ð5Þ

which is then shown as the reconstructed image. For further de-

tails on Bayesian inversion theory, see (Hanson, 1987; Mosegaard,

Sambridge, 2002; Kaipio, Somersalo, 2004; Siltanen et al., 2003).

2.3 Bayesian model for 3D dental imaging

We use the measurement model

m ¼ Ax þ � ð6Þ

for the X-ray projection data. Observation noise is assumed to be

independent of x and is modeled by a zero mean Gaussian ran-

dom vector � � Nð0;CÞ with an invertible covariance matrix C. By

(Bouman, Sauer, 1993; Siltanen et al., 2003) we know that (6) is

feasible. In practice, the covariance matrix C can be estimated using

repeated phantom measurements. With the model (6), the likeli-

hood function takes the form

pðmjxÞ / exp

�
� 1

2
kLðm � AxÞk2

�
ð7Þ

where LT L ¼ C�1 and k � k is the usual Euclidian (l2) vector norm.

As the prior model for the attenuation function of the dental

structures, we write

pprðxÞ / pþðxÞexpð�WðxÞÞ ð8Þ

where

pþðxÞ ¼
YM
k¼1

�ðxkÞ ð9Þ

Fig. 1. Left Schematic illustration of the pencil-beam attenuation
model for X-ray imaging. Right The domain V‰R3 under investiga-
tion is discretized into a lattice of M voxels Vi
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is the positivity prior, � is the Heaviside function

�ðtÞ ¼ 1; t � 0
0; t<0

�
ð10Þ

and the functional WðxÞ is of the form

WðxÞ ¼ �0kxk1 þ �1TVðxÞ

¼ �0

XM

i¼1

jxi j þ �1

XM

i¼1

X
j 2 N i

jxi � xj j ð11Þ

where N i denotes the usual six-point neighborhood for voxel i in the

3D lattice, TV(x) is the discretized total variation functional and kxk1

denotes the l1-norm of the vector x. The total variation prior is

known to favor piecewise regular solutions, in which different tis-

sues are separated to a few subregions with short boundaries and

small variation in the attenuation parameter within each subregion.

The l1-prior is known to favor solutions which consist of a few small

high-attenuation targets on low-attenuation background. The para-

meters �0 and �1 play the role of prior parameters and they can

be used to tune the relative weighting of the l1 and TV-functionals.

The prior model (8)–(11) corresponds in qualitative sense closely

to oral structures, which are expected to consist of a few subre-

gions of different tissues (enamel, bone, soft tissue, air) with crisp

boundaries. The features and the use of TV and l1 priors in inverse

problems and image enhancement have been discussed, in (Dobson,

Santosa, 1994; 1996; Donoho et al., 1992; Kaipio, Somersalo,

2004).

Using Bayes theorem and the models (7) and (8), the posterior

density assumes the form

pðxjmÞ / pþðxÞexp

�
� 1

2
kLðm � AxÞk2 � WðxÞ

�
ð12Þ

where normalization constants are omitted. The computation of the

MAP estimate from (12) amounts to solving the constrained optimi-

zation problem

xMAP ¼ arg min
x � 0

�
1

2
kLðm � AxÞk2 þ WðxÞ

�
:

2.4 Computation of the MAP estimate

A major difficulty in Bayesian inversion for 3D X-ray imaging is the

scale of the problem. At clinically relevant resolution the number of

unknowns is in the range 106–107 and computing the MAP estimate

is computationally intensive.

We compute the MAP estimate by a gradient-based optimization

technique introduced by Barzilai and Borwein (Barzilai, Borwein,

1988; Raydan, 1997). This method was chosen because the compu-

tation of the gradient for the objective functional is reasonably fast

and the method can be parallelized efficiently.

We face two difficulties. First, the functional WðxÞ is not differ-

entiable because of the absolute value function. To overcome this

problem, we use the smooth approximation

jtj � h�ðtÞ ¼
1

�
logðcos hð�tÞÞ ð13Þ

where �>0 is a parameter. The approximate differentiable prior

functional is denoted by W�ðxÞ. The second difficulty arises from

the positivity constraint. The use of constrained optimization meth-

ods is slow in high-dimensional problems. Thus, we take the posi-

tivity prior into account by applying the exterior-point search

methods (Fiacco, McCormick, 1990): the constrained problem is ap-

proximated by a sequence of unconstrained problems

x
ð jÞ
MAP ¼ arg min

�
1

2
kLðm � Axð jÞÞk2 þ W�ðxð jÞ þ Eð jÞðxð jÞÞ

�
ð14Þ

where j is used to denote the j th problem in the sequence and

Eð jÞðxð jÞÞ penalizes negative components of the solution xð jÞ:

Eð jÞðxð jÞÞ ¼
XM

k¼1

�ð jÞðxð jÞ
k Þ ð15Þ

where

�ð jÞðxð jÞ
k Þ ¼ �jðxð jÞ

k Þ2; x
ð jÞ
k <0

0; x
ð jÞ
k � 0

;

(
ð16Þ

and f�j ; j ¼ 1; 2; . . . ;Nsg is a sequence of increasing positive penalty

parameters. It should be noted that the exterior point methods

guarantee the non-negativity of the solution only in the asymptotic

limit j ! 1.

The Barzilai-Borwein gradient-descent method consists of two

steps: the update of the estimate and the computation of the step-

length parameter. In the case of solving the problem (14), the

update step assumes the form

xð j;tþ1Þ ¼ xð j;tÞ � s�1
t gð j;tÞ ð17Þ

where the update direction is the gradient of the argument in

Eq. (14)

gð j;tÞ ¼ �AT LT Lðm � Axð j;tÞÞ þ rW�ðxð j;tÞÞ þ rEð jÞðxð j;tÞÞ ð18Þ

and the second superindex t denotes the iteration index. The second

step, the computation of the step length parameter st is of the form

st ¼
ðxð j;tÞ � xð j;t�1ÞÞT ðgð j;tÞ � gð j;t�1ÞÞ

kxð j;tÞ � xð j;t�1Þk2
: ð19Þ

The stopping criteria for the optimization problem (14) is based on

the magnitude of the gradient and the decrease in the optimization

functional.

3. Parallelized implementation

A Beowulf cluster (Sterling et al., 1995) was constructed for 3D

imaging problems. It consists of thirteen 3.0 GHz Pentium4 desk-

top-PCs each with 4 gigabytes of memory. The nodes are intercon-

nected by a standard 1 Gb ethernet switch. The optimization

algorithm (17)–(19) was implemented using the ANSI-C program-

ming language and PETSc (Balay et al., 1995) application library,

which in turn uses MPICH (Gropp et al., 1996) for interprocess

communication and ATLAS (Whaley, Petitet, Dongarra, 2001) for

linear algebra routines.

In the first stage of the parallel algorithm, the observation matrix

A is constructed. PETSc provides a parallel compressed sparse row

matrix format, whose rows are distributed across computation

nodes. Observation matrix creation is easily parallelized by distribut-

ing the X-ray source locations and detector array geometries among

the computation nodes, each of which calculates the respective ray

lengths inside the voxel grid and insert the resulting rows in the

matrix A independently of other nodes.

The second stage of the parallel algorithm implements the itera-

tion (17)–(19) for the sequence of the exterior point problems (14).

At this stage, the value and gradient of the modified prior functional

W�ðxÞ need to be evaluated and new update directions calculated.

The PETSc library provides a framework for distributing the image
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vector x across the computation nodes. The framework hides the

details of fetching the neighboring voxels that possibly reside on

other nodes and hence the implementation of the prior functional

W�ðxÞ or other similar type Markov Random Field (MRF) functionals

is straightforward. The evaluation of the likelihood gradient, which is

the first term in Eq. (18), and the evaluation of residual kLðm � AxÞk2

in Eq. (14) for stopping criteria include matrix-vector products. These

are implemented by the PETSc tools that distribute the computation

of a matrix-vector product evenly on the computation nodes.

4. Evaluation

The proposed method is tested with extraoral projection data

acquired from a male patient using a commercial panoramic X-ray

device. Tomosynthetic reconstructions (Webber et al., 1997; Webber,

Messura, 1999) are shown as reference for the reconstructions with

the Bayesian method.

The test case is an example of limited angle 3D imaging in implant

planning. In such situations, it is often important to get accurate

measurement for the depth and location of the mandibular nerve

canal. In the imaging experiment the source and detector are ro-

tated around the head and images of the region of interest (ROI) are

taken through the head. The imaging geometry is shown in Fig. 2.

The projection directions were chosen such that the cross section of

the nerve canal would be approximately perpendicular to the pro-

jection directions.

Eleven equispaced projection radiographs of the patient were

acquired with a total view angle of 40�. Figure 3 shows one extraoral

projection image of the patient. The size of projection image

is 876� 876 with pixel size 0.09 mm� 0.09 mm. The projection

images were downsampled to half the original size before trans-

forming them into tomographic data. Thus, the number of data in

the inverse problem was N ¼ 11�438�438 � 2:1 � 106.

The results are shown in Fig. 4. A vertical slice from tomosynthetic

reconstruction is shown on the left, and the respective slice from the

3D MAP estimate on the right. The volume of the domain � in the

computations was approximately 79 mm�79 mm�63 mm and the

voxel size in the reconstruction was 0.38 mm�0.38 mm�0.38 mm.

With this resolution, the number of unknowns in the inverse pro-

blem was M ¼ 207�207�167 � 7:2 � 106. For the prior parameters

we used values �0 ¼ 10 and �1 ¼ 1. The smoothing parameter for

the approximation of the absolute value function was �¼ 200 and

the sequence of the exterior point parameters f�j ; j ¼ 1; . . . ; 5g were

in the range from 3000 to 10. Each problem in the sequence of the

five exterior-point problems was iterated until convergence. The

convergence was verified by monitoring the norm of the gradient

gð j;tÞ and the change in the residual (i.e., the value of the optimiza-

tion functional in Eq. (14)); the iteration was stopped once either of

these figures got below predefined thresholds, or maximum number

of iterations was reached. For the norm of the gradient we used

Fig. 2. Geometry for limited angle 3D dental imaging in implantol-
ogy. The source positions are denoted by circles. The thick arc
illustrates the jaw bone and dental arc. The region of interest
(ROI) is denoted by thin line. For clarity, the detector is depicted
only for one source location

Fig. 3. One (mandibular) projection radiograph of the patient

Fig. 4. Reconstructions from patient data (11 projections spanning a view angle of 408). Left Vertical slice of tomosynthetic reconstruction.
Right Corresponding slice from the 3D MAP-estimate. The arrow denotes the location of the mandibular nerve channel
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threshold value 1, for the change in residual threshold value 0.1 and

the maximum number of iterations was 6.

The computation of the MAP estimate took 3 min 26 sec. The

location of the mandibular nerve canal in the MAP reconstruction

is denoted by an arrow. As can be seen, the nerve canal and the

interfaces of solid and spongy bone are seen more clearly in the MAP

estimate than in the tomosynthetic slice.

5. Conclusion

We introduce a Bayesian model for 3D dental imaging with sparse

projection data and implement the computation of the MAP esti-

mate for the 3D attenuation function with parallel computing tech-

niques in a Beowulf cluster computer.

The proposed method shows important anatomical details more

clearly than tomosynthesis, which is currently the method of choice

for 3D dental imaging with limited data. Also, parallelization speeds

the computation up to clinically acceptable level.

Acknowledgements

This work was supported by the National Technology Agency of

Finland (TEKES projects 2844=31=02 and 1107=401=00) and the

Academy of Finland (projects 108299 and 213476, Finnish Pro-

gramme for Centres of Excellence in Research 2006–2011).

References

Balay, S., Buchelman, K., Eijkhout, V., Gropp, W. D., Kaushik, D., Knepley, M. G., McInnes,

L. C., Smith, B. E., Zhang, H. (1995): PETSc Users Manual. Argonne National Laboratory

ANL-95=11, revision 2.1.5 edition.

Barzilai, J., Borwein, J. M. (1988): Two point step size gradient method. IMA J. Numer.

Anal. 8: 141–148.

Bouman, C., Sauer, K. (1993): A generalized Gaussian image model for edge-preserving

MAP estimation. IEEE Trans. Image Processing 2: 296–310.

Brocklebank, L. (1997): Dental Radiology – Understanding the X-ray Image: Oxford

University Press. ISBN 0-19-262411-3.

Dobson, D. C., Santosa, F. (1994): An image enhancement technique for electrical

impedance tomography. Inv. Probl. 10: 317–334.

Dobson, D. C., Santosa, F. (1996): Recovery of blocky images from noisy and blurred data.

SIAM J. Appl. Math. 56: 1181–1198.

Donoho, D. L., Johnstone, I. M., Hoch, J. C., Stern, A. S. (1992): Maximum entropy and the

nearly black object. J. Roy. Statist. Ser. B 54: 41–81.
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Kolehmainen, V., Siltanen, S., Järvenpää, S., Kaipio, J. P., Koistinen, P., Lassas, M.,

Pirttila, J., Somersalo, E. (2003): Statistical inversion for medical X-ray tomography

with few radiographs II: Application to dental radiology. Phys. Med. Biol. 48:

1465–1490.

Kolehmainen, V., Vanne, A., Siltanen, S., Järvenpää, S., Kaipio, J. P., Lassas, M., Kalke, M.
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