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a b s t r a c t

TheNovikov–Veselov (NV) equation is a (2+1)-dimensional nonlinear evolution equation that generalizes
the (1 + 1)-dimensional Korteweg–de Vries (KdV) equation. The solution of the NV equation using the
inverse scattering method has been discussed in the literature, but only formally (or with smallness
assumptions in the case of nonzero energy) because of the possibility of exceptional points, or singularities
in the scattering data. In this work, absence of exceptional points is proved at zero energy for evolutions
with compactly supported, smooth and rotationally symmetric initial data of the conductivity type:
q0 = γ−1/2∆γ 1/2 with a strictly positive function γ . The inverse scattering evolution is shown to be
well-defined, real-valued, and preserving conductivity-type. There is no smallness assumption on the
initial data.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The nonlinear Novikov–Veselov equation for qτ = qτ (z) = qτ
(x, y) is
∂qτ
∂τ

= −∂3z qτ − ∂
3
zqτ +

3
4
∂z(qτvτ )+

3
4
∂z(qτvτ ),

vτ (z) = ∂
−1
z ∂zqτ (z),

(1)

where τ ≥ 0 and ∂z =
1
2 (

∂
∂x + i ∂

∂y ). Novikov and Veselov intro-
duced (1) in a periodic setting in 1984 [1,2]. Eq. (1) is the most nat-
ural generalization of the (1 + 1)-dimensional Korteweg–de Vries
(KdV) equation [3] to dimension (2 + 1) since the variables x and
y have more symmetric roles in (1) than they do in other general-
izations, such as the Kadomtsev–Petviashvili equation [4].

The study of Eq. (1) in the non-periodic setting (z ∈ R2) via
the inverse scattering method was initiated by Boiti et al. [5,6] and
continued by Tsai [7–9]. They discuss the following formal inverse
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scattering scheme for solving the Cauchy problem for (1):

✲t+0 (k) t+τ (k)
exp(iτ(k3 + k

3
))·

✻

❄

Q+T +

q0(z)

T +

✻

❄

Q+

qτ (z)

✲nonlinear evolution (1)
qNVτ (z), (2)

where T + and Q+ stand for the direct and inverse nonlinear
Fourier transforms, respectively, and the function t+τ : C → C
is called the scattering transform. Precise definitions of T +,Q+ and
t+τ are given below in Section 2. The definition of qτ involves point-
wise multiplication in the transform domain:

qτ := Q+


eiτ(k

3
+k3) t+0 (k)


, (3)

and qNVτ is defined as the solution of (1)with initial condition qNV0 =

q0.
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The diagram (2) is written with the hope that for certain initial
data q0 all the maps in (2) would be well-defined and qτ = qNVτ .
Then the nonlinear Novikov–Veselov equation (1) could be solved
by a linear operation on the transform side, analogously to the
celebrated inverse scattering method for the KdV equation [10].

However, the inverse scatteringmethod (2) has turned out to be
difficult to analyse. The key obstacle in the investigation of (2) is the
possibility of exceptional points of qτ . Exceptional points are values
of the generalized frequency-domain variable k ∈ C at which the
solutions to the related (non-physical) scattering problem are not
unique, meaning that nonzero radiating solutions exist for zero
incident field. At exceptional points the scattering data t+τ (k) is not
well-defined and possibly singular. The operator Q+ is not defined
for singular argument functions, which prevents the use of (2) if
there are exceptional points. Furthermore, taking a small initial
potential q0 does not save the day because the related Faddeev
Green’s function has a log |k| singularity at k = 0. Consequently,
Neumann series techniques cannot be used in general to prove
the absence of exceptional points; currently one has to resort to
arguments based on the Fredholm alternative.

The following class of conductivity-type potentials is useful
as a source of initial data because such potentials do not have
exceptional points [11, Lemma 1.5].

Definition 1.1. A potential q ∈ Lp(R2) with 1 < p < 2 is of
conductivity type if q = γ−1/21γ 1/2 for some real-valued γ ∈

L∞(R2) satisfying γ (z) ≥ c > 0 for almost every z ∈ R2 and
∇(γ 1/2) ∈ Lp(R2).

The term ‘‘conductivity’’ and the seemingly superficial square
roots in Definition 1.1 come from the related studies of Calderón’s
inverse conductivity problem, see [11]. We use these terms
and notations here because it turns out that the inverse
scattering evolution preserves conductivity-type, and the evolving
conductivity may have a (yet unknown) physical interpretation.

Let us recall previously published results about the diagram (2):

• Boiti et al. [6]: assume that q0 is such that the solution qNVτ to (1)
exists and does not have exceptional points. Then the scattering
data evolves as T +(qNVτ ) = eiτ(k

3
+k3)T +(q0).

• Tsai [9]: take q0 from a certain class of small and rapidly
decaying initial data (the class excludes conductivity-type
potentials). Assume that q0 has no exceptional points and
that qτ is well-defined by (3). Then qτ is a solution of the
Novikov–Veselov equation (1).

• Nachman [11]: let q0 be of conductivity type. Then q0 does not
have exceptional points and the scattering data T +(q0) is well-
defined.

• L–M–S [12]: let q0 be a smooth, compactly supported conduct-
ivity-type potential with γ ≡ 1 outside supp (q0). Then
Q+(T +q0) = q0. Further, formula (3) gives a well-defined con-
tinuous function qτ : R2

→ C satisfying the estimate |qτ (z)| ≤

C(1 + |z|)−2 for all τ > 0.

Nachman’s work paved the way for rigorous results: all studies
about diagram (2) published before [11] were formal as they had
to assume the absence of exceptional points without specifying
acceptable initial data.

We remark that the above discussion concerns only the ‘‘zero-
energy case’’ where initial data q0(z) tends to zero when |z| → ∞.
There is a body of work concerning inverse scattering solutions
for the Novikov–Veselov solution when the initial data tends
to a nonzero constant at infinity, see [13–16] and the review
article [17]. However, those results are based on a smallness
assumption of initial data being close enough to a nonzero
constant function; then there are no exceptional points. This
paper is concerned with the zero-energy case where smallness
assumptions cannot be used for proving the absence of exceptional
points.

We prove the following new results. Let q0 be a real-
valued, infinitely smooth, compactly supported conductivity-type
potential with γ ≡ 1 outside supp(q0). If the initial data has the
rotational symmetry q0(z) = q0(|z|) for all z ∈ R2, then qτ stays
real-valued for all τ ≥ 0. Furthermore, qτ is a conductivity-type
potential and does not have exceptional points. Also, the scattering
data of qτ is well-defined and the following identity holds:

T +(Q+t+τ ) = t+τ . (4)

The precise statement and assumptions are given below in
Corollary 7.1. We remark that there is no smallness assumption on
the initial data.

Our results are not completely restricted to compactly sup-
ported initial data satisfying q0(z) = q0(|z|). For example, evo-
lutions from symmetric initial data are valid starting points of
another evolution; then the initial data is not necessarily symmet-
ric or compactly supported. See Section 7 for more details.

In Part II of this paper [18] we introduce two new algorithms for
computing qτ and qNVτ numerically. There, we compute evolutions
for several examples with rotationally symmetric, compactly
supported initial data of conductivity type. The evolutions qτ and
qNVτ are found to agree with high precision. This phenomenon is
now backed up theoretically as well: during the review process of
this article, Peter Perry proved in [19] using Miura map techniques
that the equality qτ = qNVτ holds in (2) for a wide class of initial
potentials.

This paper is organized as follows. In Section 2 we define the
direct and inverse nonlinear Fourier transforms T ± and Q±. In
Section 3 we prove new estimates for the complex geometric
optics solutions used in the inverse scattering method. Section 4
contains results and numerical examples concerning rotationally
symmetric initial data. Section 5 is devoted for a proof that if the
evolved potential qτ stays real-valued, then it stays conductivity-
type. In Section 6 we prove identity (4), and in Section 7 we
conclude our results. Appendix A provides links between the
present paper and previous results, and Appendix B is devoted to
the rather technical proof of Lemma 6.1.

Throughout the paper we denote ⟨z⟩ = 1 + |z| and abuse
notation bywriting k1+ ik2 = k = (k1, k2) and x+ iy = z = (x, y).

2. The inverse scattering method

2.1. The direct scattering maps T ±

Consider the Schrödinger equation

(−∆+ q)ψ±( · , k) = 0, (5)

where q ∈ Lp(R2) is a real-valued potential with 1 < p < 2 and
k is a complex parameter. We look for complex geometrical optics
solutions ψ± of (5) with asymptotic behaviour

ψ+(z, k) ∼ eikz = exp(i(k1 + ik2)(x + iy)),

ψ−(z, k) ∼ eikz = exp(i(k1 + ik2)(x − iy)).

Such solutions were first introduced by Faddeev [20]. More
precisely, we require

e−ikzψ+(z, k)− 1 ∈ W 1,p̃(R2), (6)

e−ikzψ−(z, k)− 1 ∈ W 1,p̃(R2), (7)

where 1/p̃ = 1/p − 1/2. Here W 1,p̃(R2) is the Sobolev space
consisting of Lp̃(R2) functions whose (distributional) partial
derivatives belong to Lp̃(R2) as well. Note that p̃ > 2 and by
Sobolev’s embedding theoremW 1,p̃(R2) functions are continuous.
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Given a potential q, there may be complex numbers k for which
the solutions ψ± of (5) satisfying (6) and (7) are not unique. Such
k are called exceptional points of q.

If q has no exceptional points, then we write µ+(z, k) :=

e−ikzψ+(z, k) and µ−(z, k) := e−ikzψ−(z, k) and write formally

t+(k) :=


R2

ei(kz+kz)q(z)µ+(z, k)dz, (8)

t−(k) :=


R2

ei(kz+kz)q(z)µ−(z, k)dz. (9)

If the integrals in (8) and (9) are convergent, then t± : C → C are
well-defined and we set T ±(q) = t±.

For example, compactly supported conductivity-type potentials
do not have exceptional points and lead to convergent integrals in
(8) and (9), see [11].

Real-valuedness of q results in symmetries in scattering data.
Complex conjugating Eq. (5) for ψ+ gives

0 = (−∆+ q)ψ+(z, k) = (−∆+ q)ψ+(z, k), (10)
and conjugating the corresponding asymptotic condition (6) gives

e−ikzψ+(z, k)− 1 = e−i(−k)zψ+(z, k)− 1 ∈ W 1,p̃(R2). (11)
Comparing (5) with (10) and (7) with (11), and using uniqueness,
shows that

ψ+(z, k) = ψ−(z,−k). (12)
Furthermore, complex conjugating Eq. (8) and substituting (12)
yields

t+(k) = t−(−k). (13)

2.2. The inverse scattering maps Q±

Given two functions t± : C → C, consider the D-bar equations

∂

∂k
µ+(z, k) =

t+(k)
4πk

e−i(kz+kz)µ+(z, k), (14)

∂

∂k
µ−(z, k) =

t−(k)
4πk

e−i(kz+kz)µ−(z, k), (15)

with a fixed parameter z ∈ R2 and requiring large |k| asymptotics
µ±(z, ·)− 1 ∈ L∞

∩ Lr(C) for some 2 < r < ∞.
Assuming that Eqs. (14) and (15) have unique solutionswith the

appropriate asymptotic properties, set ψ+(z, k) := eikzµ+(z, k)
and ψ−(z, k) := eikzµ−(z, k) and define formally

(Q+t+)(z) :=
i
π2
∂z


C

t+(k)
k

e−ikz ψ+(z, k)dk, (16)

(Q−t−)(z) :=
i
π2
∂z


C

t−(k)
k

e−ikz ψ−(z, k)dk, (17)

where dk denotes Lebesgue measure:


C f (k)dk =


R2 f (k1, k2)
dk1dk2.

The inverse transform (16) first appeared in [6, formula
(4.10)]. For the origins of the ∂ method, see the work of Beals
and Coifman [21–23], Ablowitz et al. [24–27], and Henkin and
Novikov [28]. Also, see the survey articles [29,30].

The functions t± : C → C need to be ‘‘well-behaved’’ in order
for Eqs. (14) and (15) to be uniquely solvable, for the integrals in
(16) and (17) to be convergent, and for the derivatives in (16) and
(17) tomake sense. According to [12], one example of good-enough
behaviour is the following pair of assumptions:
t±(k)
k

∈ S(C),
t±(k)
k

∈ S(C),

where S(C) denotes rapidly decaying and infinitely smooth
functions of Schwartz.
3. Properties of solutions of the ∂ equations

This section is concerned with solutions µ±(z, k) of the ∂
Eqs. (14) and (15). The functionsµ±(z, 0) are especially important
as they will play a central role in later sections in the analysis of
conductivity-type potentials. We start by analysing the decay in
|µ±(z, 0)− 1| when |z| → ∞.

Lemma 3.1. Let t± : C → C satisfy

|t±(k)| ≤ C |k|2 for small |k|,
t±(k)
k

∈ S(C),
t±(k)
k

∈ S(C).

Fix 2 < r < ∞. For every z ∈ R2, let µ±(z, k) be the unique
solutions of the D-bar Eqs. (14) and (15)with the asymptotic condition
µ±(z, ·)− 1 ∈ Lr ∩ L∞.

Then the following estimate holds for all z ∈ R2:

|µ±(z, 0)− 1| ≤ C⟨z⟩−1. (18)

Proof. We prove estimate (18) for µ+ only; the proof for µ− is
analogous.

Denote e+
z (k) := exp(i(kz + kz)) and use equation

µ+(z, 0) := lim
s→0

µ+(z, s)

= 1 +
1

4π2


R2

t+(k)
|k|2

e+

−z(k)µ+(z, k)dk (19)

(given in [11, formula (0.38)]) to write

µ+(z, 0)− 1 =
1

4π2


C

t+(k)
|k|2

e+

−z(k)µ+(z, k)dk

=
1

4π2


C

t+(k)
|k|2

e+

−z(k)dk (20)

+
1

4π2


C

t+(k)
|k|2

e+

−z(k)(µ+(z, k)− 1)dk. (21)

Now term (20) is finite because |k|−2 t+(k) ∈ L1(C) by assumption.
Term (21) is finite because of Hölder’s inequality and the
inequalities ∥|k|−2 t+(k)∥Lr′ (C) < ∞ and ∥µ+(z, · ) − 1∥Lr (C) ≤

C < ∞withC not depending on z (see [11, formula 4.1]). Therefore

∥µ+(z, 0)∥L∞(R2) < ∞. (22)

We can bound term (20) as follows to study its behaviour when
|z| → ∞:

|z|


C

t+(k)
|k|2

e+

−z(k)dk


=

−iz


C

t+(k)
|k|2

e+

−z(k)dk


=


C

t+(k)
kk

∂e+

−z(k)
∂k

dk


≤


C

e+

−z(k)

k

∂

∂k


t+(k)
k


dk


+


C
πδ0(k)

t+(k)
k

e+

−z(k)dk
 (23)

≤

1k ∂∂k

t+(k)
k


L1(C)

≤

1k

L1(|k|<1)

 ∂∂k

t+(k)
k


L∞(C)

+

 ∂∂k

t+(k)
k


L1(C)

< ∞. (24)
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Note that term (23) vanishes since limk→0 t+(k)/k = 0 by
assumption.

Let us now bound term (21).

|z|


C

t+(k)
|k|2

e+

−z(k)(µ+(z, k)− 1)dk


=


C

t+(k)
kk

∂e+

−z(k)
∂k

(µ+(z, k)− 1)dk


≤


C

1

k
e+

−z(k)(µ+(z, k)− 1)
∂

∂k


t+(k)
k


dk
 (25)

+


C
πδ0(k)

t+(k)
k

e+

−z(k)(µ+(z, k)− 1)dk
 (26)

+


C

t+(k)
|k|2

e+

−z(k)∂kµ+(z, k)dk
 . (27)

Similarly to the case of term (23), the term (26) vanishes. We can
bound (25) using Hölder’s inequality (we have 1 < r ′ < 2 since
2 < r < ∞) and [12, Lemma 3.3]:1k ∂∂k


t+(k)
k


Lr′ (C)

∥µ+(z, · )− 1∥Lr (C) ≤ C⟨z⟩−1. (28)

The Lr
′

norm in (28) is finite because at infinitywe have rapid decay
and near the origin the derivative of t+(k)/k ∈ S(C) is smooth and
|k|−r ′ is integrable as r ′ < 2.

To bound (27) note that we get from the ∂ equation

∂

∂k
µ+(z, k) =

t+(k)
4πk

e+

−z(k)(µ+(z, k)− 1)+
t+(k)
4πk

e+

−z(k). (29)

Estimate (27) using (29) and [12, Lemma 3.3]:
C

t+(k)
|k|2

e+

−z(k)

×


t+(k)
4πk

e+

−z(k)(µ+(z, k)− 1)+
t+(k)
4πk

e+

−z(k)

dk


≤

1
4π


C

|t+(k)|2

k|k|2
(µ+(z, k)− 1)dk


+

1
4π


C

|t+(k)|2

k|k|2
dk
 (30)

≤
1
4π

1k
 t+(k)k

2

Lr′ (C)

∥µ+(z, k)− 1∥Lr (C) + C ′ (31)

≤ C⟨z⟩−1
+ C ′. (32)

Note that the second integral in (30) and the Lr
′

norm in (31) are
finite by the assumption that |t+(k)| ≤ C |k|2 for k near zero.

Combining (20), (21), (24), (25), (27), (28) and (32) yields

|z| |µ+(z, 0)− 1| ≤ C,

which together with (22) gives |µ+(z, 0)− 1| ≤ C⟨z⟩−1. �

Definition 1.1 of conductivity-type potentials includes a
derivative condition. The following lemmawill be used in Section 5
for proving such a condition for the evolved potential.

Lemma 3.2. Let t± : C → C satisfy

|t±(k)| ≤ C |k|2 for small |k|,
t±(k)
k

∈ S(C),
t±(k)
k

∈ S(C).

Fix 2 < r < ∞. For every z ∈ R2, let µ±(z, k) be the unique
solutions of the D-bar Eqs. (14) and (15)with the asymptotic condition
µ±(z, ·)− 1 ∈ Lr ∩ L∞. Then

|∇µ±(z, 0)| ≤ C⟨z⟩−2 for all z ∈ R2. (33)

Proof. We prove estimate (33) for µ+ only; the proof for µ− is
analogous.

We first prove the estimate |∂zµ
+(z, 0)| ≤ C⟨z⟩−2. Differenti-

ate (19) to get

∂zµ
+(z, 0) =

1
4π2


C


−i

t+(k)
k

e+

−z(k)µ+(z, k)dk

+
t+(k)
|k|2

e+

−z(k)∂zµ+(z, k)


dk

=
−i
4π2


C

t+(k)
k

e+

−z(k)dk (34)

+
1

4π2


C


−i

t+(k)
k

e+

−z(k)(µ+(z, k)− 1)dk (35)

+
t+(k)
|k|2

e+

−z(k)∂zµ+(z, k)


dk.

Now (34) is rapidly decaying since it is the Fourier transform of a
Schwartz function. Let us estimate (35). Integration by parts and
applying Eq. (14) yields for z ≠ 0

|z|
−i


C

t+(k)
k

e+

−z(k)(µ+(z, k)− 1)dk

+


C

t+(k)
|k|2

e+

−z(k)∂zµ+(z, k)dk


=

−iz


C

t+(k)
k

e+

−z(k)(µ+(z, k)− 1)dk

+ i(−iz)


C

t+(k)
|k|2

e+

−z(k)∂zµ+(z, k)dk


=


C

t+(k)
k

∂e+

−z(k)
∂k

(µ+(z, k)− 1)dk

+ i


C

t+(k)
|k|2

∂e+

−z(k)
∂k

∂zµ+(z, k)dk


=

−


C
e+

−z(k)


∂

∂k


t+(k)
k


(µ+(z, k)− 1)

+
t+(k)
k


∂

∂k
µ+(z, k)


dk

− i


C
e+

−z(k)


∂zµ+(z, k)

∂

∂k


t+(k)
|k|2



+
t+(k)
|k|2

∂z


∂

∂k
µ+(z, k)


dk

 . (36)

From Eq. (14) we get

∂

∂k
µ+(z, k)


=

t+(k)
4πk e+

z (k)µ
+(z, k) and

∂z


∂

∂k
µ+(z, k)


= ∂z


t+(k)
4πk

e+

z (k)µ
+(z, k)



= ik
t+(k)
4πk

e+

z (k)µ
+(z, k)

+
t+(k)
4πk

e+

z (k)∂zµ
+(z, k).
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Hence, after cancellation of two terms containing t+(k)
4πk e+

z (k)
µ+(z, k), we see that (36) is bounded by

C
e+

−z(k)

∂

∂k


t+(k)
k


(µ+(z, k)− 1)dk

 (37)

+


C
e+

−z(k)

∂

∂k


1

k

t+(k)
k


∂zµ+(z, k)dk

 (38)

+


C

|t+(k)|2

4πk|k|2
∂zµ

+(z, k)dk
 . (39)

We next estimate each of the terms (37)–(39) separately.
Hölder’s inequality and [12, Lemma 3.3] show that term (37) is

bounded by ∂∂k

t+(k)
k


Lr′ (C)

∥µ+(z, k)− 1∥Lr (C) ≤ C ′
⟨z⟩−1, (40)

where the Lr
′

norm is finite since by assumption t+(k)/k ∈ S(C).
Term (38) can be estimated using Hölder’s inequality and
[12, Lemma 3.4]:

C
e+

−z(k)

∂

∂k


1

k

t+(k)
k


∂zµ+(z, k)dk


=

π 
C
δ0(k)

t+(k)
k

e+

−z(k)∂zµ+(z, k)dk

+


C

e+

−z(k)

k


∂

∂k


t+(k)
k


∂zµ+(z, k)dk


≤

1k ∂∂k

t+(k)
k


Lr′ (C)

∂zµ+(z, k)

Lr (C) ≤ C ′

⟨z⟩−1, (41)

where the term containing δ0(k) vanishes by the assumption since
limk→0 t+(k)/k = 0. The finiteness of the Lr

′

norm in (41) is seen
as in (28). Similarly, (39) is bounded by

C

|t+(k)|2

4πk|k|2
∂zµ

+(z, k)dk


≤
1
4π

1k

t+(k)
k

2

Lr′ (C)

∂zµ+(z, k)

Lr (C)

≤ C ′
⟨z⟩−1. (42)

Combining (40)–(42) with (36) shows that (35) is bounded
by C⟨z⟩−2. Thus we may conclude that |∂zµ

+(z, 0)| ≤ C⟨z⟩−2.
The proof for |∂zµ

+(z, 0)| ≤ C⟨z⟩−2 is analogous and uses the
assumption t+(k)/k ∈ S(C). Together these two estimates yield
(33). �

4. Radially symmetric initial data

4.1. Theoretical results

Theorem 4.1. Let q0 ∈ C∞

0 (R
2) be real-valued and of conductivity

type in the sense of Definition 1.1 with γ ≡ 1 outside the support of
q0. Furthermore, assume that q0 is rotationally symmetric: q0(z) =

q0(|z|) for all z ∈ R2.
Then qτ defined by (3) is real-valued for all τ ≥ 0.

Proof. Theorem 3.3 of [31] implies that t+0 is rotationally
symmetric and real-valued:

t+0 (k) = t+0 (|k|), t+0 (k) = t+0 (k). (43)

The proof of (43) is based on first using uniqueness of solutions
to the Schrödinger equation (5) with the asymptotic condition (6)
to show

µ+

0 (z, k) = µ+

0 (e
iϕz, e−iϕk), (44)

µ+

0 (z, k) = µ+

0 (−z, k), (45)

for all z ∈ R2 and k ∈ C and ϕ ∈ R. Then t(k) = t(eiϕk) and
t(k) = t(k) by substituting (44) and (45) to formula (8) and (43)
follows.

From the real-valuedness of q0 and formula (12) we know that

µ+

0 (z, k) = µ−

0 (z,−k), (46)

and we can calculate

t−0 (−k) =


R2

e−i((−k)z+(−k)z)q0(z)µ−

0 (z,−k)dz

=


R2

ei(kz+kz)q0(z)µ+

0 (z, k)dz

=


R2

e−i(kz+kz)q0(z)µ+

0 (z, k)dz

= t+0 (k).

Applying (43) yields t+0 (k) = t+0 (k) = t+0 (−k), so we have

t+0 (k) = t−0 (k). (47)

Evolution of scattering data is defined by the same formula for
t+τ and t−τ :

t+τ (k) = eiτ(k
3
+k3)t+0 (k),

t−τ (k) = eiτ(k
3
+k3)t−0 (k),

so we may use (47) to conclude that t+τ (k) = t−τ (k) for all k ∈ C
and τ ≥ 0. In the rest of this section we denote

tτ (k) := t+τ (k) = t−τ (k). (48)

Now (48) is a remarkable identity: we canwrite the (integral form)
D-bar equations

µ+

τ (z, k) = 1 −
1

(4π)2


C

tτ (k′)

k′(k − k′)
e−i(k′z+k′z)µ+

τ (z, k′)dk′,

µ−

τ (z, k) = 1 −
1

(4π)2


C

tτ (k′)

k′(k − k′)
e−i(k′z+k′z)µ−

τ (z, k′)dk′,

and replacing z by z in the latter D-bar equation gives the relation

µ+

τ (z, k) = µ−

τ (z, k), (49)

which, substituted into (17), yields the identity

(Q+tτ )(z) = (Q−tτ )(z) (50)

for all z ∈ R2.
Our goal is to derive an equation connecting (Q+tτ )(z) and

(Q+tτ )(z). For this we calculate

µ+
τ (z,−k) = 1 −

1
(4π)2


C

tτ (k′)

k′(−k − k′)
e−i(k′z+k′z)µ+

τ (z, k′)dk′,

= 1 −
1

(4π)2


C

t0(k′)e−iτ((k′)3+(k′)3)

k′(−k − k′)
ei(k

′z+k′z)µ+
τ (z, k′)dk′,

= 1 −
1

(4π)2


C

t0(−k′)eiτ((k
′)3+(k′)3)

−k′(−k + k′)

× ei((−k′)z−k′z)µ+
τ (z,−k′)dk′,

= 1 −
1

(4π)2


C

tτ (k′)

k′(k − k′)
e−i((k′)z+k′z)µ+

τ (z,−k′)dk′,
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so by the uniqueness of solutions to the D-bar equation we have

µ−

τ (z, k) = µ+
τ (z,−k). (51)

Substituting (51) to the definition of Q+ and using (43) yields

(Q+tτ )(z) =
−i
π2


∂z


C

tτ (k′)

k′
e−i(k′z+k′z)µ+

τ (z, k′)dk′


=

−i
π2
∂z


C

t0(k′)e−iτ((k′)3+(k′)3)

k′
ei(k

′z+k′z)µ+
τ (z, k′)dk′

=
−i
π2
∂z


C

t0(−k′)eiτ((k
′)3+(k′)3)

−k′

× e−i(k′z+k′z)µ+
τ (z,−k′)dk′

=
i
π2
∂z


C

tτ (k′)

k′
e−i(k′z+k′z)µ−

τ (z, k′)dk′

= (Q−tτ )(z). (52)

Now a combination of (52) and (50) yields

(Q+tτ )(z) = (Q+tτ )(z).

Next we make use of the cubes appearing in the multiplier
exp(iτ(k3 + k

3
)) of the evolving scattering data. Define ϕ = 2π/3

and note that exp(±iϕ)3 = 1. Denote the rotation of a complex
number z by angle ϕ by zϕ := eiϕz. The scattering data tτ has the
following three-fold symmetry:

tτ (k±ϕ) = eiτ((k±ϕ )
3
+(k±ϕ )

3
)t0(k±ϕ) = eiτ(k

3
+k3)t0(k) = tτ (k), (53)

whereweused the rotational symmetry (43). Nowwe can compute

µ+

τ (zϕ, k−ϕ)

= 1 −
1

(4π)2


C

tτ (k′)

k′(k−ϕ − k′)
e−i(k′zϕ+k′zϕ )µ+

τ (zϕ, k′)dk′,

= 1 −
1

(4π)2


C

tτ (k′
−ϕ)

k′
−ϕ(k−ϕ − k′

−ϕ)

× e−i(k′
−ϕ zϕ+k′

−ϕ zϕ )µ+
τ (zϕ, k

′
−ϕ)dk

′,

= 1 −
1

(4π)2


C

tτ (k′)

k′(k − k′)
e−i(k′z+k′z)µ+

τ (zϕ, k
′
−ϕ)dk

′,

which by the uniqueness of the solution to the D-bar equation
shows that µ+

τ (z, k) = µ+
τ (zϕ, k−ϕ). The same argument works

with ϕ replaced by −ϕ, so we have the symmetry relation

µ+

τ (z, k) = µ+

τ (z±ϕ, k∓ϕ) (54)

for all z ∈ R2 and k ∈ C. Denote the coordinate transformation of
rotation by angle ϕ by Fϕ(z) := zϕ = eiϕz. Then in the complex
chain rule

∂z(f ◦ Fϕ) = ((∂z f ) ◦ Fϕ) · ∂zFϕ + ((∂z f ) ◦ Fϕ) · ∂zFϕ

we have ∂zFϕ = ∂z(eiϕz) = 0 and ∂zFϕ = ∂z(eiϕz) = eiϕ , so

((∂z f ) ◦ Fϕ) = eiϕ · ∂z(f ◦ Fϕ). (55)

Applying (55) to the definition of Q+tτ and using (54) and (53)
gives

(Q+tτ )(zϕ) =


∂z


i
π2


C

tτ (k′)

k′
e−i(k′z+k′z)µ+

τ (z, k′)dk′


◦ Fϕ

= eiϕ


i
π2
∂z


C

tτ (k′)

k′
e−i(k′zϕ+k′zϕ )µ+

τ (zϕ, k′)dk′



=
ieiϕ

π2
∂z


C

tτ (k′)

k′
e−i(k′ϕ z+k′ϕ z)µ+

τ (z, k′
ϕ)dk

′

=
ieiϕ

π2
∂z


C

tτ (k′
−ϕ)

k′
−ϕ

e−i(k′z+k′z)µ+
τ (z, k′)dk′

=
i
π2
∂z


C

tτ (k′)

k′
e−i(k′z+k′z)µ+

τ (z, k′)dk′

= (Q+tτ )(z). (56)

Now the combination of (56) and (50) tells us that qτ has two
symmetries, three-fold and reflectional:

qτ (z) = qτ (zϕ) = qτ (z−ϕ), qτ (z) = qτ (z).

This implies the following for the real part:

Re qτ (z) = Re qτ (zϕ) = Re qτ (z−ϕ), Re qτ (z) = Re qτ (z). (57)

More importantly, we see that the imaginary part of qτ satisfies

Im qτ (z) = Im qτ (zϕ), Im qτ (z) = −Im qτ (z),

implying that Im qτ (z) ≡ 0. �

4.2. An example of admissible initial data

For the reader’s convenience we present here an example of
rotationally symmetric initial data q0 that satisfies the assumptions
of Theorem 4.1.

Define a smooth function Fρ ∈ C∞

0 (R) by the formula

Fρ(λ) :=

exp


−
2(ρ2

+ λ2)

(λ+ ρ)2(λ− ρ)2


, for |λ| ≤ ρ,

0, for |λ| > ρ,

where 0 < ρ < 1 is a constant. Note that supp(Fρ) = [−ρ, ρ].
We wish to construct a real-valued function q0 ∈ C∞

0 (R
2)

which is of conductivity type in the sense of Definition 1.1. To this
end, let us define the so-called conductivity function γ : R2

→ R
by

γ (z) := 1 + αFρ(|z|), (58)

with ρ = 0.95 and α = 59. Now γ ∈ C∞

0 (R
2) is bounded away

from zero since clearly γ (z) ≥ 1 for all z ∈ R2. Furthermore,
supp(γ − 1) = B(0, ρ), so we have ∇(γ 1/2) ∈ Lp(R2) and may
conclude that γ satisfies the requirements of Definition 1.1. Now
set

q0(z) :=
1γ 1/2(z)
γ 1/2(z)

. (59)

Note that for |z| ≥ ρ we have γ (z) ≡ 1 and q0(z) ≡ 0. By
construction we have q0 ∈ C∞

0 (R
2) and q0(z) = q0(|z|), so the

assumptions of Theorem 4.1 are fulfilled. See Fig. 1 for plots of the
conductivity function γ and of the initial data q0.

Next we use the numerical techniques described in [32] for the
computation of the scattering transform t+0 = T +(q0). By (43) we
know that t+0 (k) is rotationally symmetric and real-valued, so it is
enough to compute the profile t+0 (|k|). See Fig. 2 for plots of the
scattering transform. Note that the scattering transform t+0 (k) is a
well-behaving smooth function with no singularities, as predicted
by the theory.

The function q0(2|k|) is known to be asymptotically close to
t+0 (|k|) as |k| tends to infinity. Also,we know fromanalytical results
that t+0 (0) = 0, whereas q0(0) =


R2 q(z) dz ≈ 5.3. Fig. 2 showsq0(2|k|) as dashed line, and the above-mentioned properties can

be observed.
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Fig. 1. Top row:mesh plot and profile plot of the rotationally symmetric conductivity γ (z) = γ (|z|) defined by formula (58) with parameters ρ = 0.95 and α = 59. Bottom
row: mesh plot and profile plot of the resulting conductivity-type potential q0(z) = q0(|z|) defined by formula (59). The function q0(z) is an example of admissible initial
data for the Novikov–Veselov evolution.
Fig. 2. Left: mesh plot of the rotationally symmetric scattering transform t+0 (k) = t+0 (|k|) corresponding to the initial potential q0 shown in Fig. 1. Right: profile plots of the
nonlinear Fourier transform t+0 (|k|) as solid line and the linear Fourier transform q0(2|k|) as dashed line. Note that the linear and nonlinear Fourier transforms are close to
each other for large |k|; this is consistent with the theory.
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See Example 2 of Part II of this article [18] for the numerical
computation of the Novikov–Veselov evolution initialized by the
above q0. Let us point out that several more examples can be easily
constructed by varying the parameters ρ and α.

If the initial data is not of conductivity-type, then the complex
geometric optics solutions of Eq. (5) are not unique and the
scattering transformhas singularities. It is conjectured for example
in [6] that such singularities are related to soliton solutions of
the Novikov–Veselov equation. The analysis of evolutions with
singular scattering data and further discussion of soliton properties
of conductivity-type evolutions are outside the scope of this paper.

5. Preservation of conductivity type

We study the properties of the inverse scattering evolution qτ .
We do not assume the symmetry q0(z) = q0(|z|) in this section;
instead, we just assume that qτ stays real-valued for positive times
τ > 0.

We start by deriving partial differential equations connecting
qτ with the solutions of the D-bar Eqs. (14) and (15).

Lemma 5.1. Let t± : C → C satisfy

t±(k)
k

∈ S(C),
t±(k)
k

∈ S(C).

Fix 2 < r < ∞. For every z ∈ R2, let µ±(z, k) be the unique solutions
of Eqs. (14) and (15) with the asymptotic condition µ±(z, ·) − 1 ∈

Lr ∩ L∞(C). Assume that (Q+t+)(z) and (Q−t−)(z), defined by (16)
and (17), are real-valued functions.

Then for any fixed k ∈ C \ 0 we have

(−∆− 4ik∂z + Q+t+)µ+( · , k) = 0, (60)

(−∆− 4ik∂z + Q−t−)µ−( · , k) = 0. (61)

Proof. The functions (Q±t±)(z) are well-defined by Lassas et al.
[12, Theorem 1.2].

We will prove the lemma only for µ+, as the proof for µ− is
analogous. Denote the solid Cauchy transform by

Cϕ(k) :=
1
π


C

ϕ(k′)

k − k′
dk′, (62)

where dk′ denotes the Lebesgue measure. Note that C and ∂k are
inverses of each other (modulo analytic functions). Further, define
a real-linear operator

Tzϕ(z, k) :=
t+(k)
4πk

e−z(k)ϕ(z, k). (63)

Nachman [11] proved that the operator [I − CTz] : Lr(C) → Lr(C)
is invertible and that CTz1 ∈ Lr(C). Now the ∂ equation can be
written in the convenient form

µ+
= 1 + CTzµ+, (64)

and the solution with appropriate asymptotics is given by

µ+
− 1 = [I − CTz]−1(CTz1). (65)

From the proof of [12, Theorem 1.1] we know that the
commutator ∂z(∂z + ik)with the operator of C is given by

[∂z(∂z + ik),C]ϕ =
i
π
∂z


C
ϕ(z, k′)dk′,

and that the commutator of ∂z(∂z + ik) with the operator Tz
vanishes:

[∂z(∂z + ik), Tz]ϕ(z, k) = 0.
Applying the above commutator identities to (64) yields

∂z(∂z + ik)µ+
= ∂z(∂z + ik)(1 + CTzµ+) = ∂z(∂z + ik)CTzµ+

= CTz ∂z(∂z + ik)µ+
+

i
4π2

∂z


C

t+(k′)

k
′

e−z(k′)µ+(z, k′)dk′

= CTz ∂z(∂z + ik)µ+
+

Q+t+

4
. (66)

Denote f = ∂z(∂z + ik)µ+. Now Q+t+ is real-valued function of z
and does not depend on k, so from (66) we get

(I − CTz)

f −

Q+t+

4


= CTz


Q+t+

4


=

Q+t+

4
CTz 1.

Thus f −Q+t+/4 = (Q+t+/4)(I−CTz)−1CTz 1 = (Q+t+/4)(µ+
−

1). Finally

∂z(∂z + ik)µ+
= f =

Q+t+

4
(µ+

− 1)+
Q+t+

4
=

Q+t+

4
µ+. �

We are ready to prove that the inverse scattering evolution
preserves conductivity type if it stays real-valued.

Theorem 5.1. Let q0 ∈ Lp(R2) with 1 < p < 2 be a real-valued
potential with no exceptional points. Assume that the scattering data
T ±q0 = t±0 are well-defined and satisfy

|t±0 (k)| ≤ C |k|2 for small |k|,

t±0 (k)
k

∈ S(C),
t±0 (k)
k

∈ S(C),

and that qτ = Q+

eiτ(k

3
+k3)t+0 (k)


is real-valued.

Then qτ is of conductivity type in the sense of Definition 1.1 for all
τ ≥ 0 and does not have exceptional points.

Proof. Set

t+τ (k) = eiτ(k
3
+k3) t+0 (k) (67)

for all τ ≥ 0 and note that t+τ (k)/k ∈ S(C) since by assumption
t+0 (k)/k ∈ S(C). Then by [11, Theorem 4.1] we know that for any
fixed z ∈ R2 the ∂ equation

∂

∂k
µ+

τ (z, k) =
t+τ (k)
4πk

e+

−k(z)µ+
τ (z, k) (68)

is uniquely solvable with the asymptotic condition µ+
τ (z, ·)− 1 ∈

Lr∩L∞ for some r > 2. Furthermore, [11, Theorem4.1] also implies
that µ+

τ (z, 0) := limk→0 µ
+
τ (z, k) ∈ L∞(R2) satisfies

|µ+

τ (z, 0)| > 0 for all z ∈ R2, (69)

and there is an 0 < ϵ < 1 such that we have the estimate

sup
z

|µ+

τ (z, 0)− µ+

τ (z, k)| ≤ c|k|ϵ (70)

for k near zero.
Now qτ = Q+t+τ is a well-defined continuous Lp(R2) function

for all τ ≥ 0 by [12]. Furthermore, qτ is real-valued by assumption,
and t+τ (k)/k ∈ S(C) is clear from combining (67) with the
assumption t+0 (k)/k ∈ S(C). Thus we can apply Lemma 5.1 to see
that µ+

τ satisfies

(−∆− 4ik∂z + qτ )µ+

τ ( · , k) = 0 (71)

with any fixed k ∈ C \ 0. Formula (70) and Eq. (71) imply in the
sense of distributions

lim
k→0

(∆+ 4ik∂z)µ+

τ (z, k) = 1µ+

τ (z, 0),



1330 M. Lassas et al. / Physica D 241 (2012) 1322–1335
so1µ+
τ (z, 0) = qτ (z)µ+

τ (z, 0). Using (69) we can write

qτ (z) =
1µ+

τ (z, 0)
µ+
τ (z, 0)

. (72)

Next we need to prove that µ+
τ (z, 0) is real-valued. Denote

t−τ (k) = eiτ(k
3
+k3) (T −q0)(k). (73)

Then we conclude as above that the D-bar equation

∂

∂k
µ−

τ (z, k) =
t−τ (k)
4πk

e−

−k(z)µ−
τ (z, k), (74)

where e−

k (z) = exp(i(kz + kz)), is uniquely solvable with the
asymptotic condition µ−

τ (z, ·)− 1 ∈ Lr ∩ L∞ for some r > 2.
The real-valuedness of the initial data q0 implies by (13) the

symmetry t−0 (k) = t+0 (−k). Substituting this to (67) and (73) yields

t+τ (−k) = e−iτ(k3+k3) t+τ (−k) = eiτ(k
3
+k3) t+0 (−k) = t−0 (k).

Calculate

µ+
τ (z,−k) = 1 −

1
4π2


t+τ (k′)

k′(−k − k′)
ei(k

′z+k′z)µ+

τ (z, k
′)dk′

= 1 −
1

4π2


t+τ (−k′)

(−k′)(−k + k′)
ei((−k′)z−k′z)µ+

τ (z,−k′)dk′

= 1 −
1

4π2


t−τ (k

′)

k′(k − k′)
e−i(k′z+k′z)µ+

τ (z,−k′)dk′,

which, in view of uniqueness of solutions to (74), implies that

µ+
τ (z,−k) = µ−

τ (z, k). (75)

By (70) we have at the limit k → 0 the identity

µ+
τ (z, 0) = µ−

τ (z, 0). (76)

A computation similar to (52) shows that Q+t+τ = Q−t−τ . The
assumption on real-valuedness of qτ then implies qτ = Q+t+τ =

Q−t−τ , and by Lemma 5.1 the functions µ±
τ satisfy

(−∆− 4ik∂z + qτ )µ+

τ (·, k) = 0,

(−∆− 4ik∂z + qτ )µ−

τ (·, k) = 0.

Taking the limit as k → 0 in each of these equations implies

µ+

τ (z, 0) = µ−

τ (z, 0).

Combining this with (76) implies

µ+
τ (z, 0) = µ−

τ (z, 0) = µ+

τ (z, 0),

so µ+
τ (z, 0) is real-valued.

Finally, by Lemma 3.2 we have |∇µ+
τ (z, 0)| ≤ C⟨z⟩−2, so

∇µ+
τ (z, 0) ∈ Lp(R2) for all 1 < p < 2. Hence qτ is of conductivity

type in the sense of Definition 1.1 with conductivity γ := µ+
τ

(z, 0)2. By [11, Lemma 1.5] qτ has no exceptional points. �

6. Evolution of scattering data

Assume that the initial potential q0 ∈ Lp(R2)with 1 < p < 2 is
a real-valued potentialwith no exceptional points. Further, assume
that the initial scattering data T ±q0 = t±0 satisfies

|t±0 (k)| ≤ C |k|2 for small |k|,

t±0 (k)
k

∈ S(C),
t±0 (k)
k

∈ S(C),
(77)
and leads to a real-valued evolution

qτ (z) = Q+(eiτ(k
3
+k3)t+0 (k)) = Q+t+τ .

The aim of this section is to prove that the scattering data of qτ
evolves as expected; more precisely, that T +(Q+t+τ ) = t+τ .

We remark that we do not assume the symmetry q0(z) =

q0(|z|) in this section.
The function Q+t+τ is constructed as explained in Section 2.2

using the unique solutions of the D-bar equation

∂

∂k
µ+

τ (z, k) =
t+τ (k)
4πk

e−i(kz+kz)µ+
τ (z, k), (78)

with large |k| asymptotics µ+
τ (z, ·) − 1 ∈ L∞

∩ Lr(C) for some
2 < r < ∞. By [12] we know that qτ = Q+t+τ : R2

→ C is a
well-defined continuous Lp(R2) function with any 1 < p < 2 and
for all τ > 0.

We wish to apply the nonlinear Fourier transform T + to the
function qτ . By Theorem 5.1 we know that qτ is of conductivity
type:

qτ (z) =
1µ+

τ (z, 0)
µ+
τ (z, 0)

, (79)

and does not have exceptional points. Thus there exists for any
k ∈ C \ 0 a unique solution of the partial differential equation

(−∆− 4ik∂z + qτ (z))µ+

τ (z, k) = 0 (80)

with large |z| asymptotics µ+
τ ( · , k)− 1 ∈ W 1,p̃(R2).

If we had additional decay in qτ (z) as |z| → ∞, then we could
construct T +qτ by the integral

R2
ei(kz+kz)qτ (z)µ+

τ (z, k)dz, (81)

which would be absolutely convergent. Furthermore, we could
make use of [11, Theorem 2.1], stating that the D-bar derivative
(∂/∂k) µ+

τ (z, k) is equal to

(T +(Q+t+τ ))(k)
4πk

e−i(kz+kz)µ+
τ (z, k). (82)

Furthermore, in view of Lemma 5.1, the unique solutions of Eqs.
(78) and (80) are the same functions. Therefore, comparing (78)
and (82) would yield the desired identity T +(Q+t+τ ) = t+τ .

However, we do not have available any extra decay in qτ (z)
as |z| → ∞; we just know that |qτ (z)| ≤ C⟨z⟩−2. Therefore, at
this point it is even unclear whether formula T +(Q+t+τ ) is well-
defined.

To analyse T +(Q+t+τ ), we add and subtract the constant 1 in
(81), write

T +qτ =


R2

ei(kz+kz)qτ (z)(µ+

τ (z, k)− 1)dz +


R2

ei(kz+kz)qτ (z)dz

= T1(k)+ T2(k), (83)

and interpret T1 and T2 as follows.
For fixed k ∈ C\0 the term T1(k) in (83) is bounded in absolute

value by Hölder’s inequality because µ+
τ ( · , k) − 1 ∈ Lp̃(R2) and

qτ ∈ Lp̃
′

(R2). Note that 1 < p̃′ < 2 since 2 < p̃ < ∞. Furthermore,
the norm ∥µ+

τ ( · , k)−1∥Lp̃(R2) depends continuously on k. This can
be seen as follows. The unique solution of the partial differential
equation (80) with appropriate asymptotics is given by

µ+

τ (z, k)− 1 = [I + gk ∗ (qτ · )]−1(gk ∗ qτ ), (84)

as shown in [11, p. 82]. Note that we have the estimates

∥gk ∗ q∥W1,p̃(R2) ≤ Ck∥q∥Lp(R2), (85)

∥gk ∗ (q · )∥L(W1,p̃(R2)) ≤ C ′

k∥q∥Lp(R2). (86)
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By [11, formula (1.6)] we have for any h ∈ Lp(R2)

gk ∗ h = −
1
4ik

[∂
−1
z − (∂z + ik)−1∂∂

−1
]h,

and by [11, formula (1.2)] we know that ∥(∂z + ik)−1h∥Lp̃(R2) ≤

c∥h∥Lp(R2) with c independent of k. Hence the constants Ck and
C ′

k in (85) and (86) and the norm ∥µ+
τ ( · , k) − 1∥Lp̃(R2) depend

continuously on k. Thus T1 ∈ L1loc(C \ 0).
The second term T2(k) in (83) can be interpreted as the Fourier

transform of an Lp(R2) function, the result belonging to Lp
′

(R2)
by the Riesz–Thorin interpolation theorem. Here p′ is defined by
1 = 1/p + 1/p′. Therefore T2 ∈ L1loc(C \ 0).

We can conclude from (83) that T +qτ ∈ L1loc(C \ 0), and
consequently it can be interpreted as a distribution: T +qτ ∈

D ′(C \ 0).
Having established the existence of T +(Q+t+τ ) in the sense

of distributions, we proceed to show that it equals t+τ . As
mentioned above, we cannot apply [11, Theorem 2.1] to show that
(∂/∂k) µ+

τ (z, k) equals (82) because there is not enough decay
in qτ (z) available as z → ∞. We overcome this problem by
generalizing [11, Theorem 2.1]. The crucial new technique is to
approximate qτ = µ+

τ (z, 0)
−11µ+

τ (z, 0) with a rapidly decaying
conductivity-type potential in the norm of Lp(R2) space so that the
function µ+

τ (z, 0) is approximated simultaneously.

Lemma 6.1. Let q : R2
→ C be a continuous, real-valued, conduct-

ivity type potential of the form q(z) = µ(z)−11µ(z). Assume that
these estimates hold for all z ∈ R2:

|q(z)| ≤ C⟨z⟩−2, (87)
|µ(z)| ≥ c > 0, (88)

|µ(z)− 1| ≤ C⟨z⟩−1, (89)

|∇µ(z)| ≤ C⟨z⟩−2. (90)

Set ϕ(z) = exp(−|z|2) and ϕε(z) = ϕ(εz) for all ε > 0. Define an
approximation to µ by

µ(ε)(z) := 1 + ϕε(z)(µ(z)− 1), (91)

and an approximation to q by

q(ε)(z) :=
1µ(ε)(z)
µ(ε)(z)

. (92)

Then for any exponent 1 < p < 2 we have

lim
ε→0

∥q(ε) − q∥Lp(R2) = 0. (93)

The proof of Lemma 6.1 is postponed to Appendix B. We are
ready to prove the main theorem of this section.

Theorem 6.1. Let q0 ∈ Lp(R2) with 1 < p < 2 be a real-valued
potential with no exceptional points. Assume that the scattering data
T ±q0 = t±0 satisfies

|t±0 (k)| ≤ C |k|2 for small |k|,

t±0 (k)
k

∈ S(C),
t±0 (k)
k

∈ S(C).

Assume that qτ = Q+t+τ = Q+(eiτ(k
3
+k3)t+0 (k)) is real-valued.

Then (T +(Q+t+τ ))(k) = t+τ (k) for all k ∈ C \ 0.

Proof. By Lassas et al. [12, Theorem 1.2] we know that qτ : R2
→

C is a continuous function and satisfies |qτ (z)| ≤ C⟨z⟩−2. Thus
qτ belongs to Lp(R2) for any 1 < p < 2. By Theorem 5.1 and
[11, Lemma 1.5] we may conclude that qτ does not have excep-
tional points and we can write qτ (z) = (1µ+

τ (z, 0))/µ
+
τ (z, 0).

Define for all ε > 0 the approximate potential

q(ε)τ (z) :=
1µ(ε)τ (z, 0)

µ
(ε)
τ (z, 0)

, (94)

where the function µ(ε)τ is given by

µ(ε)τ (z, 0) := 1 + ϕε(z)(µ+

τ (z, 0)− 1). (95)

Now the approximate potential q(ε)τ decays exponentially when
|z| → ∞. Thus, since µ+

τ (z, 0) is real-valued, the function q(ε)τ (z)
satisfies the assumptions of [11, Theorem 1.1]. There are no
exceptional points for q(ε)τ (z) with any ε > 0, and we can define
for all k ∈ C \ 0

µ(ε)τ (z, k)− 1 = [I + gk ∗ (q(ε)τ · )]−1(gk ∗ q(ε)τ ). (96)

Furthermore, by [11, Theorem 2.1] the functions µ(ε)τ (z, k) satisfy
the ∂-equation

∂

∂k
µ(ε)τ (z, k) =

(T +(q(ε)τ ))(k)

4πk
e+

−z(k)µ
(ε)
τ (z, k) (97)

with the asymptotic condition µ(ε)τ (z, ·)− 1 ∈ Lr ∩ L∞(C).
How are the functions µ(ε)τ (z, k) related to the solutions

µ+
τ (z, k)? It is clear from (95) that µ(ε)τ (z, 0) tends to µ

+
τ (z, 0) as

ε → 0, but how about nonzero k? Subtracting (96) from (84) and
using the resolvent equation

[I + gk ∗ (qτ · )]−1
− [I + gk ∗ (q(ε)τ · )]−1

= −[I + gk ∗ (qτ · )]−1
[gk ∗ ((qτ − q(ε)τ ) · )][I + gk ∗ (q(ε)τ · )]−1

together with (85) and (86) yield

∥µ+

τ (z, k)− µ(ε)τ (z, k)∥W1,p̃ = ∥[I + gk ∗ (qτ · )]−1(gk ∗ qτ )

− [I + gk ∗ (q(ε)τ · )]−1(gk ∗ q(ε)τ )∥W1,p̃

≤ ∥[I + gk ∗ (qτ · )]−1(gk ∗ (qτ − q(ε)τ ))∥W1,p̃

+ ∥([I + gk ∗ (qτ · )]−1

− [I + gk ∗ (q(ε)τ · )]−1)(gk ∗ q(ε)τ )∥W1,p̃

≤ ∥[I + gk ∗ (qτ · )]−1
∥L(W1,p̃)∥(gk ∗ (qτ − q(ε)τ ))∥W1,p̃

+ ∥([I + gk ∗ (qτ · )]−1
[gk ∗ ((qτ − q(ε)τ ) · )]

× [I + gk ∗ (q(ε)τ · )]−1)(gk ∗ q(ε)τ )∥W1,p̃

≤ C ′

k∥(gk ∗ (qτ − q(ε)τ ))∥W1,p̃ + C ′′

k ∥[I + gk ∗ (q(ε)τ · )]−1
∥L(W1,p̃)

× ∥gk ∗ ((qτ − q(ε)τ )·)∥L(W1,p̃)∥gk ∗ q(ε)τ ∥W1,p̃

≤ C ′′′

k


1 + ∥[I + gk ∗ (q(ε)τ ·)]−1

∥L(W1,p̃)∥gk ∗ q(ε)τ ∥W1,p̃


× ∥qτ − q(ε)τ ∥Lp .

From Lemma 6.1 we know that

lim
ε→0

∥q(ε)τ − qτ∥Lp(R2) = 0. (98)

Therefore, recalling that the constants Ck and C ′

k in (85) and (86)
depend continuously on k, we can conclude that

lim
ε→0

∥µ+

τ ( · , k)− µ(ε)τ ( · , k)∥W1,p̃(R2) = 0, (99)

where the convergence is uniform for k ∈ K ⊂ C \ 0 with
any compact K . We remark that since W 1,p̃(R2) functions are
continuous by Sobolev’s embedding theorem, Eq. (99) implies
uniform point-wise convergence as well.
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Now we can use (83) and (99) to calculate

lim
ε→0

T +(q(ε)τ ) = lim
ε→0


R2

ei(kz+kz)q(ε)τ (z)µ
(ε)
τ (z, k)dz

= lim
ε→0


R2

ei(kz+kz)q(ε)τ (z)(µ
(ε)
τ (z, k)− 1)dz

+ lim
ε→0


R2

ei(kz+kz)q(ε)τ (z)dz

=: lim
ε→0

T (ε)1 (k)+ lim
ε→0

T (ε)2 (k)

= T1(k)+ T2(k)
= T +(qτ )

= T +(Q+t+τ ). (100)

Note that limε→0 T
(ε)
1 = T1 in the topology of L1loc(C \ 0) because

of (99) and limε→0 q(ε)τ = qτ in Lp̃
′

(R2) by Lemma 6.1. Also,
limε→0 T

(ε)
2 = T2 in the topology of Lp

′

(R2) because limε→0 q(ε)τ =

qτ in Lp(R2) by Lemma 6.1. Thus the convergence in (100) happens
in particular in L1loc(C \ 0), and consequently in D ′(C \ 0).

We know by construction that the unique solutions µ+
τ satisfy

∂

∂k
µ+

τ (z, k) =
t+τ (k)
4πk

e−i(kz+kz)µ+
τ (z, k). (101)

The above analysis shows that Eq. (97) converges in the sense of
distributions D ′(C \ 0) to

∂

∂k
µ+

τ (z, k) =
(T +(Q+t+τ ))(k)

4πk
e−i(kz+kz)µ+

τ (z, k) (102)

as ε → 0. Thus right hand sides of the ∂ Eqs. (101) and (102) must
be the same elements of D ′(C \ 0):

(T +(Q+t+τ ))(k)
4πk

e−i(kz+kz)µ+
τ (z, k)

=
eiτ(k

3
+k3)t+0 (k)
4πk

e−i(kz+kz)µ+
τ (z, k).

Since e−i(kz+kz) never vanishes, we get for k ≠ 0

(T +(Q+t+τ ))(k)µ+
τ (z, k) = t+τ (k)µ+

τ (z, k).

Now the function µ+
τ ( · , k) cannot be identically zero since

µ+
τ ( · , k)−1 ∈ W 1,p̃(R2). Furthermore, t+τ is a smooth function and

T +(Q+t+τ ) ∈ D ′(C). We may conclude that (T +(Q+t+τ ))(k) =

t+τ (k) for all k ≠ 0. �

7. Conclusion

The following corollary is the main result of this paper.

Corollary 7.1. Let q0 ∈ C∞

0 (R
2) be a real-valued, smooth, compactly

supported conductivity-type potential (in the sense of Definition 1.1)
with γ ≡ 1 outside supp (q0). Assume the rotational symmetry
q0(z) = q0(|z|). Denote t+τ (k) = eiτ(k

3
+k3)(T +q0)(k). Then qτ :=

Q+t+τ is for all τ > 0 a real-valued, continuous, conductivity-type
potential in Lp(R2) with any 1 < p < 2 satisfying the following
estimate: |qτ (z)| ≤ C⟨z⟩−2. Moreover, qτ has no exceptional points
and (T +(Q+t+τ ))(k) = t+τ (k) for all k ≠ 0.

Proof. Weknow from [31, Theorem3.1] and [12, Theorems2.1 and
2.2] that

|t±0 (k)| ≤ C |k|2 for small |k|,

t±0 (k)
k

∈ S(C),
t±0 (k)
k

∈ S(C).
The evolving potential is a well-defined continuous function qτ :

R2
→ C satisfying |qτ (z)| ≤ C⟨z⟩−2 by [12, Theorem 1.2].
The analysis in Section 4 above shows that qτ is real-valued.

Then the assumptions of Lemma 5.1 and Theorem 5.1 are satisfied
and wemay conclude that qτ is of conductivity type in the sense of
Definition 1.1 for all τ ≥ 0 and that qτ has no exceptional points.
Furthermore, the assumptions of Theorem 6.1 are fulfilled, and so
(T +(Q+t+τ ))(k) = t+τ (k) for all k ≠ 0. �

Our results do in fact apply to more general initial data than the
rotationally symmetric cases of Corollary 7.1. Namely, Sections 5
and 6 only assume that q0 has nicely behaving scattering data and
that the inverse scattering evolution stays real-valued. (The latter
assumption is natural: the right-hand side of the Novikov–Veselov
equation (1) is real-valued, so real-valuedness of q0 implies that of
qNVτ as well. If qτ had nonzero imaginary part, the identity qNVτ = qτ
could not hold.)

Actually,we can already describe a class of nonsymmetric initial
data for the inverse scattering evolution. Let qτ be an evolution
with rotationally symmetric initial data satisfying the assumptions
of Corollary 7.1, and fix τ ′ > 0. Defineq0(z) := qτ ′(z) and note
that the diagram given in Box I is well-defined. Nowq0(z) is valid
initial data (if we substitute T +(q0(z))(0) := T +(qτ ′(z))(0) = 0
making the initial scattering data smooth) and leads to a real-
valued inverse scattering evolutionqτ . Butwhat dowe know about
symmetries ofqτ? The analysis in Section 4 implies thatqτ (z) =qτ (zϕ) =qτ (z−ϕ), qτ (z) =qτ (z)
for ϕ = 2π/3. But our theoretical results do not rule out the
possibility of rotational symmetry of qτ . However, in Part II of
this paper we compute qτ (z) numerically for several rotationally
symmetric initial data and observe that for τ ′ > 0 we have in
general qτ ′(z) ≠ qτ ′(|z|); this is verified numerically beyond
doubt. (In addition, qτ appears not to be compactly supported,
but the numerical evidence is non-conclusive due to the finite
computational domain.)

Finally, we mention that the numerical evidence presented in
Part II of this paper strongly suggests that qNVτ = qτ for evolutions
with initial data satisfying the assumptions of Corollary 7.1.

Acknowledgements

The work of ML and SS was supported by the Academy of
Finland (Finnish Centre of Excellence in Inverse Problems Research
2006–2011, decision number 213476). In addition, SS was funded
in part by the Grant-in-Aid for JSPS Fellows (No. 0002757) of
the Japan Society for the Promotion of Science. This project
was partially conducted at the Mathematical Sciences Research
Institute, Berkeley, whose hospitality is gratefully acknowledged.

Appendix A. Connections to previous work

A.1. Remarks on the results of Boiti, Leon, Manna and Pempinelli

It was shown in [6] that if a function p(z, τ ) does not have
exceptional points and evolves according to the evolution equation
∂p
∂τ

= −a0∂3z p − a0∂
3
zp + 3a0∂z(p ∂z∂

−1
z p)+ 3a0∂z(p ∂z∂−1

z p),

(A.1)

where a0 ∈ R is a constant, then the scattering data

F1(k) =
1
4π


R2

eikxp(z, τ )φ(z, k)dx (A.2)

evolves in τ as follows:
∂

∂τ
F1(k) = i(a0k3 + a0k

3
)F1(k). (A.3)
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✲ ✲t+0 (k) t+
τ ′(k) t+

τ ′+τ
(k)

exp(iτ ′(k3 + k
3
))· exp(iτ(k3 + k

3
))·

✻

T +

q0(z)

T +

✻

❄

Q+ T +

✻

❄

Q+

qτ ′(z) qτ ′+τ (z)

= =

q0(z) qτ (z)
Box I.
The function φ(z, k) appearing in (A.2) is a solution of the
Schrödinger equation

(∂z∂z − p)φ( · , k) = 0, φ(z, k) ∼ eikz . (A.4)

Formula (A.1) corresponds to [6, formula (2.12)], formula (A.2)
corresponds to [6, formula (3.26)], formula (A.3) corresponds to [6,
formula (5.7)], and formula (A.4) corresponds to [6, formulae (2.3),
(3.1), (3.4)].

Set qτ (z) = p(z/2, τ ). Then Eq. (A.1) takes the form

∂qτ
∂τ

= −8a0∂3z qτ − 8a0∂
3
zqτ + 6a0∂z(qτ ∂z∂

−1
z qτ )

+ 6a0∂z(qτ ∂z∂−1
z qτ ). (A.5)

Further, noting that ∂z∂z =
1
4∆ and comparing (5) and (6) with

(A.4) shows that

φ(z, k) = ψ+(2z, k/2). (A.6)

Thus we can use (A.2) and (A.6) to compute

F1(k) =
1
8π


R2

eik(z/2)p(z/2, τ )φ(z/2, k)dz

=
1
8π


R2

ei(k/2)zqτ (z)ψ+(z, k/2)dz

=
1
8π

t+τ (k/2). (A.7)

A combination of (A.3) and (A.7) then yields

∂

∂τ
t+τ (k) = i(8a0k3 + 8a0k

3
)t+τ (k). (A.8)

The desired evolution of scattering data is achieved by the choice
a0 = 1/8. Then Eq. (A.5) takes exactly the form (1).

A.2. Remarks on the results of Tsai

It would be tempting to follow Tsai’s proof in [9] to show that
the inverse scattering evolution qτ actually coincides with qNVτ in
diagram (2). However, the class of initial data used in [9] excludes
conductivity-type potentials, which in turn are the only known
initial data with no exceptional points. The specific problem with
Tsai’s proof is the requirement m+(x, 0) = 0 on the line following
(3.12) in [9]. In our notation this would mean µ+(z, 0) = 0 which
never holds for conductivity-type potentials because µ+(z, 0) =
√
γ (z) ≥ c > 0. Finding such assumptions on q0 that qτ = qNVτ in

diagram (2) remains an open theoretical problem.
Tsai gives in [7,9] a formal derivation of a hierarchy of

evolution equations (parametrized by n = 1, 3, 5, . . .) using the
maps T +
: q → t+ and Q+ in the following inverse scattering

scheme:

t+0
exp(−in(kn+kn)τ )·
−−−−−−−−−→ t+τ

T +

 Q+

q0 −−−−→ qτ

The non-periodic version of the Novikov–Veselov equation (1)
appears as the case n = 3. We remark that all the results in this
paper hold for the cases n > 3 as well. We just need to replace the
angle ϕ = 2π/3 by ϕ = 2π/n in Section 4.

Appendix B. Proof of Lemma 6.1

Clearly q ∈ Lp(R2) with any 1 < p < 2. Note that assumption
(88) and formula (91) imply (for the same constant c , independent
of ε)

0 < c ≤ |µ(ε)(z)|, (B.1)

so there is no division by zero in the definition (92). Write

q(ε)(z)− q(z) = 1µ(z)


1
µ(ε)(z)

−
1
µ(z)


−


1µ(z)−1µ(ε)(z)

 1
µ(ε)(z)

.

Then (93) follows from the triangle inequality and (B.1) if we prove
the following two equations:

lim
ε→0

1µ 1
µ(ε)

−
1
µ


Lp(R2)

= 0, (B.2)

lim
ε→0

∥1µ−1µ(ε)∥Lp(R2) = 0. (B.3)

Let us prove (B.3) first. Calculate

1µ(ε) = (µ− 1)1ϕε + 2∇ϕε · ∇µ+ ϕε1µ, (B.4)

and further, with the notation (x, y) = z = x + iy,

∂ϕε(z)
∂x

= −2ε2xϕε(z), (B.5)

∂ϕε(z)
∂y

= −2ε2yϕε(z), (B.6)

1ϕε(z) = 4ε2(ε2x2 + ε2y2 − 1)ϕε(z). (B.7)
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Direct computation shows that for any s ≥ 0 we have

∥ |z|sϕε(z)∥p =


R2

|z|psϕ(εz)pdz
1/p

=


R2

|w|
psε−psϕ(w)p

dw
ε2

1/p

= ε−s−2/p
∥ |w|

sϕ(w)∥p. (B.8)

Here and belowwe use the shorthand notation ∥ · ∥Lp(R2) = ∥ · ∥p.
By (B.4) we see that

1µ−1µ(ε) = −2∇ϕε · ∇µ− (µ− 1)1ϕε + (1 − ϕε)1µ.

(B.9)

Using (B.5), (B.8) and assumption (90) we get∂ϕε∂x ∂µ

∂x


p

= 2ε2


R2

∂µ(z)∂x

p |x|pϕε(z)pdz
1/p

≤ 2ε2


R2
⟨z⟩−2p

|z|pϕε(z)pdz
1/p

≤ 2Cε2∥ϕε∥p ≤ 2Cε2−2/p
∥ϕ∥p,

and the same estimate holds for x replaced by y. Therefore, since
p > 1 implies 2 − 2/p > 0, we have proved the convergence

lim
ε→0

∥∇ϕε · ∇µ∥p = 0. (B.10)

Using (89), (B.7) and (B.8) with s = 0 and s = 1 we get

∥(µ− 1)1ϕε∥p = 4ε2∥(µ− 1)(ε2x2 + ε2y2 − 1)ϕε∥p

≤ 4ε2∥(µ− 1)ε2|z|2ϕε∥p + 4ε2∥(µ− 1)ϕε∥p

≤ Cε4∥ |z|ϕε(z) ∥p + 4ε2∥µ− 1∥∞ ∥ϕε∥p

≤ Cε3−2/p
∥ϕ∥p + Cε2−2/p

∥ϕ∥p,

and it follows from 2/p < 2 that

lim
ε→0

∥(µ− 1)1ϕε∥p = 0. (B.11)

We denote the characteristic function of the disc B(0, ε−1/4) by
χ|z|<ε−1/4(z) and will use the inequality

∥f ∥p ≤ ∥χ|z|<ε−1/4 f ∥p + ∥χ|z|≥ε−1/4 f ∥p (B.12)

in the sequel. Note that 1 − ϕε(z) = 1 − ϕε(|z|) is monotonically
increasing in |z| and that the area of the disc B(0, ε−1/4) is πε−1/2

and that by assumption (87) we have

|1µ(z)| ≤ ∥µ∥∞

1µµ
 = ∥µ∥∞|q(z)| ≤ C⟨z⟩−2. (B.13)

Estimate using Taylor expansion of the exponential function near
ε = 0

∥χ|z|<ε−1/4

1 − ϕε


1µ∥

p
p

≤ πε−1/2
∥(1µ)p∥∞ ∥χ|z|<ε−1/4 |1 − ϕε|

p
∥∞

≤ Cε−1/2
|1 − exp(−ε2ε−1/2)|p

≤ Cε(3p−1)/2. (B.14)

In the unbounded set {z : |z| ≥ ε−1/4
} we use (B.13) and the fact

|1 − ϕε(z)| ≤ 1 to compute

∥χ|z|≥ε−1/4

1 − ϕε


1µ∥

p
p ≤ C∥χ|z|≥ε−1/4⟨z⟩−2

∥
p
p

≤ C ′


∞

ε−1/4
r−2prdr

≤
C ′ε(p−1)/2

2(p − 1)
. (B.15)
Now (B.14) and (B.15) together with (B.12) and p > 1 give

lim
ε→0

∥(1 − ϕε)1µ∥p = 0, (B.16)

and (B.10), (B.11), (B.16) and (B.9) imply (B.3).
It remains to prove (B.2). The lower bound (B.1) gives for any

z ∈ R2 1
µ(ε)

−
1
µ

 =

µ− µ(ε)

µµ(ε)

 ≤ c−2
|µ− µ(ε)|

= C
1 − ϕε


µ− 1

 . (B.17)

We compute first inside the disc B(0, ε−1/4) using (B.17):χ|z|<ε−1/41µ


1
µ(ε)

−
1
µ

p
p

≤ Cπε−1/2
(1µ)p

∞

µ− 1
p

∞

∥χ|z|<ε−1/4 |1 − ϕε|
p
∥∞

≤ Cε(3p−1)/2, (B.18)

where the second inequality follows as in (B.14). In the com-
plement of the disc B(0, ε−1/4) we use (18), (B.13), (B.17) and
|1 − ϕε| ≤ 1 to getχ|z|≥ε−1/41µ


1
µ(ε)

−
1
µ

p
p

≤ C
χ|z|≥ε−1/4 |1µ|

pµ− 1
p

∞

≤ C ′
χ|z|≥ε−1/4⟨z⟩−3p


∞

≤ C ′


∞

ε−1/4
r−3prdr

≤
C ′ε(3p−2)/4

3p − 2
. (B.19)

Now (B.2) follows from (B.12), (B.18) and (B.19).
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