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Abstract. The aim of electrical impedance tomography (EIT) is to recon-

struct the conductivity values inside a conductive object from electric mea-

surements performed at the boundary of the object. EIT has applications in
medical imaging, nondestructive testing, geological remote sensing and sub-

surface monitoring. Recovering the conductivity and its normal derivative at

the boundary is a preliminary step in many EIT algorithms; Nakamura and
Tanuma introduced formulae for recovering them approximately from local-

ized voltage-to-current measurements in [Recent Development in Theories &

Numerics, International Conference on Inverse Problems 2003]. The present
study extends that work both theoretically and computationally. As a theoret-

ical contribution, reconstruction formulas are proved in a more general setting.
On the computational side, numerical implementation of the reconstruction

formulae is presented in three-dimensional cylindrical geometry. These exper-

iments, based on simulated noisy EIT data, suggest that the conductivity at
the boundary can be recovered with reasonable accuracy using practically re-
alizable measurements. Further, the normal derivative of the conductivity can

also be recovered in a similar fashion if measurements from a homogeneous
conductor (dummy load) are available for use in a calibration step.
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1. Introduction. The aim of Electrical Impedance Tomography (EIT) is imaging
the conductivity distribution inside an unknown body from electrical measurements
at the boundary. Applications of EIT include medical imaging, nondestructive test-
ing and subsurface monitoring, see [6, 7, 13]. We introduce a new practical solution
method for the subproblem of recovering the conductivity and its normal derivative
at the boundary of a three-dimensional target from localized measurements. This
is required in several EIT algorithms as the first step before full reconstruction.

Assume given a bounded domain Ω ⊂ R3 with Lipschitz boundary ∂Ω and a
real-valued conductivity γ ∈ L∞(Ω) satisfying γ(x) ≥ c > 0 almost everywhere in
Ω. We consider applying a voltage potential f on the boundary and solving the
Dirichlet problem {

∇ · (γ∇u) = 0 in Ω,
u = f on ∂Ω,

(1)

where u = u(x) is electric potential. The resulting distribution of current through
the boundary is

(2) Λγf = γ
∂u

∂ν
|∂Ω

where Λγ is the Dirichlet-to-Neumann (DN) map and ν is the outward unit normal.
The problem is to determine γ from the knowledge of Λγ . This mathematical
formulation was introduced by Calderón in [12].

Practical measurements are typically done using a finite number of electrodes on
the surface of the body, and various data models including electrodes are discussed
in [14, 44]. In this study we use the continuum model (1) for simplicity. However,
the effect of electrodes is taken into account by considering the maximum frequency
of spatial oscillations in Dirichlet data f in (1) that can be approximated with
reasonable accuracy using a given number of electrodes.

The following cylindrical geometry is frequently used in our discussion. Take
` > 0 and R > 0 and define

(3) Ω :=
{

(x2
1 + x2

2)1/2 < R, |x3| < `
}

= Ω′×[−`, `] ⊂ R3,

where Ω′ = D(0, R) ⊂ R2. Denote the lateral boundary surface of Ω by

Γ :=
{

(x2
1 + x2

2)1/2 = R, |x3| < `
}

= (∂Ω′)×[−`, `] ⊂ ∂Ω.

Parametrize a neighborhood of Γ by boundary normal coordinates (τ, s, r):

(4) x1 = (R− r) cos(s/R), x2 = (R− r) sin(s/R), x3 = τ.

Then Ω and Γ are given by 0 < r ≤ R and r = 0, respectively.
Given a point x0 ∈ Γ, we wish to recover γ(x0) and ∂γ/∂ν(x0) approximately

from the (local) knowledge of Λγ . Without loss of generality we may put x0 =
(0, 0, 0) in the coordinate system (τ, s, r). We assume that the conductivity γ is
once continuously differentiable in a neighborhood of the boundary. Let η(τ, s) be
any function in C1

0 (Γ), choose a unit vector (t1, t2) ∈ R2 and define

φN (τ, s) = eiN(τt1+st2)η(τ, s),(5)

ψN (τ, s) = ei
N
2 (τt1+st2)η(τ, s).(6)

The following formulas can be derived from Theorem 1 in Section 2:
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∫
R2

γ(τ, s, 0) η(τ, s)2 dτds = lim
N→∞

N−1〈ΛγφN , φN 〉,(7)

∫
R2

∂γ

∂ν
(τ, s, 0) η(τ, s)2 dτds = lim

N→∞

[(
2− 1 + t1

2 − t22

2RN

)
〈ΛγφN , φN 〉(8)

−4〈ΛγψN , ψN 〉
]
.

Practical implementation of formulas (7) and (8) in dimension two is reported
in [40]; according to those results, formula (7) can be used reliably for approximate
recovery of the conductivity at the boundary, while practical use of formula (8)
seems to require an unrealistic number of electrodes.

This paper has two goals. The theoretical goal is to prove generalizations of
formulas (7) and (8) in a more general setting, where the forthcoming formulae
(17) and (18) which generalize (7) and (8) contain geometric information about the
boundary ∂Ω. Such information may be used for estimating the shape of the bound-
ary from EIT data, but we do not discuss such possibilities further in this work.
Uncertainty in domain shape is a significant source of error in EIT reconstructions
[30, 20, 1].

The computational goal is to implement (7) and (8) numerically in the three-
dimensional cylindrical geometry (3) and study the possibilities of using them in
practical EIT. We recover the trace of conductivity approximately at the boundary
using formula (7) with a finite value of N . The results suggest that the right hand
side of (7) converges as N →∞ quickly enough for the Dirichlet data (5) to remain
only mildly oscillatory. It seems that the frequency of those oscillations is low
enough for φN (τ, s) to be represented reasonably accurately using 64 electrodes.

Practical use of formula (8) to recover the normal derivative of the conductiv-
ity seems to be more problematic, as is the case in the two-dimensional situation
[40]. The convergence of the right hand side of (8) is too slow for acceptable recon-
structions from realistic voltage-to-current measurements. However, our numerical
experiments suggest that the difference between the right hand sides of (8) corre-
sponding to a nontrivial conductivity and to a constant conductivity do converge
rather quickly as N →∞, allowing reasonable reconstructions of normal derivative
from realistic data after a calibration step.

Most three-dimensional EIT algorithms for recovering conductivity inside Ω are
iterative methods where the direct problem (1) needs to be solved repeatedly using
a numerical algorithm, typically the finite element method (FEM). This is compu-
tationally demanding since 3D FEM involves representing the conductivity with a
large number of parameters. Out of the few published implementations of 3D EIT
we mention the work of Barber, Brown, Metherall and Smallwood [31, 32, 33]; Blue,
Goble, Cheney, Isaacson, Newell, Ross and Saulnier [5, 22, 41]; Morucci, Granie,
Lei, Chabert and Marsili [34]; Kaipio, Savolainen, P.J. Vauhkonen and M. Vauhko-
nen [49, 50, 51]; and Wexler [52]. In all these works the reconstruction algorithms
need a good initial guess for conductivity inside Ω in order to convergence to the
global minimum; at present γ is often assumed to be constant near the boundary.
We believe that the knowledge of conductivity γ and its normal derivative at the
boundary ∂Ω helps to design better initial guesses for full reconstruction algorithms.

Non-iterative 3D EIT algorithms have been suggested as well, see [4, 8, 16],
and numerical inclusion detection algorithms are presented in [24, 19, 25]. In such
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methods it may be important to continue the conductivity artificially outside Ω in
a regular fashion; this involves recovering γ and ∂γ/∂ν at the boundary first.

The mathematical formulation of the inverse conductivity problem was originally
given by Calderón, who solved in [12] a linearized version of the problem. Unique
determination of piecewise real-analytic conductivities from the DN map was proved
for Rn with n ≥ 2 in [29]. The possibility of uniquely determining an infinitely
smooth conductivity with n ≥ 3 was shown in [47]. Later, unique determination in
the case n ≥ 3 has been shown for conductivities having 3

2 derivatives in [42] (see also
the refinement [10]), and in [23] for conductivities allowed to have certain conormal
singularities on submanifolds. In dimension n = 2, uniqueness was proven in [46]
for radially symmetric conductivities and in [36] for nonsymmetric, twice weakly
differentiable conductivities. Generalization to one derivative was provided in [11],
and Calderón’s original L∞ question was solved in [3].

Previous theoretical results on the recovery of conductivity and its derivatives
at the boundary include [2, 28, 29, 35, 36, 48] starting from infinite precision data
measured on the whole boundary, and [9, 27, 37, 38, 39] starting from infinite
precision data measured on a part of the boundary. The present work is the first
numerical boundary reconstruction result in dimension three.

This paper is organized as follows. In Section 2 we give a proof of formulas (7)
and (8) using our main Theorem 1, which in turn is proved in Section 3. In Section
4 we explain how we simulate noisy voltage-to-current data, and in Section 5 we
substitute the data to formulas (7) and (8) to study their convergence in practice
as N grows. Based on those numerical experiments we introduce and demonstrate
a calibrated reconstruction method in Section 6. Finally, we conclude our findings
in Section 7.

2. Basic theorem and derivation of formulas (7) and (8). Let Ω be a
bounded domain in Rn with n ≥ 2. We assume that the boundary ∂Ω is Lip-
schitz and, in addition, locally C2 near a recovery point x0 ∈ ∂Ω. Then there
exists a C2 diffeomorphism y = Ψ(x) which induces a curvilinear coordinate system
y = (y′, yn) = (y1, · · · , yn−1, yn) around x0 such that Ψ(x0) = 0 and Ω, ∂Ω are
given by

(9) Ω = {yn > 0}, ∂Ω = {yn = 0}

locally around y = 0. Let G = (gij)1≤i,j≤n be the metric tensor associated with
the diffeomorphism y = Ψ(x), whose components are given by

(10) gij = ei · ej .

Here the natural base related to the curvilinear coordinate system y is formed by

(11) ei =

[
∂xk
∂yi

]
k↓1,2,··· ,n

(i = 1, 2, · · · , n).

We assume that y = (y′, yn) forms the boundary normal coordinates so that

(12) gnn = 1, gαn = gnα = 0 (α = 1, 2, · · · , n− 1)

in a neighborhood of x0 in Ω. The contravariant components gij (1 ≤ i, j ≤ n) of
G−1 are defined matrixwise as (

gij
)

= G−1.
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Furthermore, it is easy to see that

(13) gij =

n∑
k=1

∂yi
∂xk

∂yj
∂xk

.

It follows from (12) that in a neighborhood of x0 in Ω we have

(14) gnn = 1, gαn = gnα = 0 (α = 1, 2, · · · , n− 1).

Let d and δ be sufficiently small positive numbers so that the expressions (9) for
Ω and ∂Ω are valid in a relatively open neighborhood N of x0 ∈ ∂Ω, where

(15) N = { |y′| < d, 0 ≤ yn < 2δ } ⊂ Ω.

Let φ = φ(y′) be a phase function which satisfies the following eikonal equation:

(16)

n−1∑
i,j=1

gij(y′, 0)
∂φ

∂yi

∂φ

∂yj
= 1.

We remark that equation (16) can be solved in { |y′| < d } by the method of charac-
teristic curves ([17]). When gij(y′, 0) = δij (i, j = 1, 2, · · · , n− 1), we immediately
have φ = y′ · t′, where t′ = (t1, · · · , tn−1) is any unit vector in Rn−1. We shall use
this specific phase function below in our numerical experiments.

Theorem 1. Assume that γ ∈ L∞(Ω) is strictly positive: γ ≥ c > 0 (a.e. x ∈ Ω).
Also, suppose that γ = γ(y′, yn), as a function of yn ∈ [0, 2δ] with values in the space
of L2({|y′| ≤ d}), is right continuous at yn = 0, and that ∇y′γ(y′, 0) ∈ L2({|y′| ≤
d}). Let η(y′) be any function in C1

0 (Rn−1) compactly supported in {|y′| ≤ d} and
define the Dirichlet data fN and gN for N = 1, 2, 3, . . . by

fN = eiNφ(y′)η(y′)
∣∣
y=Ψ(x),x∈∂Ω

, gN = ei
N
2 φ(y′)η(y′)

∣∣
y=Ψ(x),x∈∂Ω

.

Then (i) and (ii) below hold:

(i) We have the equality

(17) lim
N→∞

N−1〈ΛγfN , fN 〉 =

∫
Rn−1

γ(y′, 0)
η(y′)2√

det(gij(y′, 0))
dy′.

(ii) Suppose that γ = γ(y′, yn), as a function of yn ∈ [0, 2δ] with values in the
space of L2({|y′| ≤ d}), is right differentiable at yn = 0, and that ∇y′γ(y′, 0) ∈
L2({|y′| ≤ d}). Then

lim
N→∞

[
4〈ΛγgN , gN 〉 − 2〈ΛγfN , fN 〉

]
=

∫
Rn−1

∂γ

∂yn
(y′, 0)

η(y′)2√
det(gij(y′, 0))

dy′

+
1

2

∫
Rn−1

γ(y′, 0)
∂

∂yn

∑n−1
i,j=1 g

ij φyiφyj + 1√
det(gij)

∣∣∣∣
yn=0

η(y′)2 dy′.(18)

Derivation of formulas (7) and (8) from the theorem 1.
Putting n = 3 and (y1, y2, y3) = (y′, y3) = (τ, s, r), from (11), (4) and (10) we

get

G =
(
gij
)

=

 1 0 0

0
(
1− r/R

)2
0

0 0 1

 , (
gij
)

= G−1 =

 1 0 0

0
(
1− r/R

)−2
0

0 0 1


and det

(
gij
)

=
(
1 − r/R

)−2
. Thus we see that (τ, s, r) form boundary normal

coordinates. Moreover, since gij(y′, 0) = δij (i, j = 1, 2), as a solution to eikonal
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equation (16) we may choose φ = y′ · t′ = τ t1 + s t2, where t′ = (t1, t2) is any unit
vector in R2. Then formula (7) is an immediate consequence of formula (17).

Noting that −∂γ∂r (τ, s, 0) = ∂γ
∂ν (τ, s, 0), where ν is the outward unit normal vector

to the boundary ∂Ω, we obtain∫
R2

∂γ

∂ν
(τ, s, 0)η(τ, s)2 dτds = lim

N→∞

[
2〈ΛγφN , φN 〉 − 4〈ΛγψN , ψN 〉

]
−1 + t1

2 − t22

2R

∫
R2

γ(τ, s, 0) η(τ, s)2 dτds,

which combined with (7) yields (8).

3. Proof of Theorem 1. Let ζ(yn) ∈ C∞([0,∞)) satisfy 0 ≤ ζ ≤ 1, ζ(yn) = 1 for
0 ≤ yn ≤ δ, and ζ(yn) = 0 for 2δ ≤ yn. Then from the weak formulation of Λγ it
follows that

(19) 〈ΛγfN , fN 〉 =

∫
Ω

γ∇uN · ∇(ζ FN ) dx,

where uN ∈ H1(Ω) is the solution to

(20) ∇ · (γ∇uN ) = 0 in Ω, uN |∂Ω = fN ,

and FN (x) is an H1(Ω) extension of fN , for which we take

(21) FN (x) = eiNφ(y′) e−Nynη(y′)
∣∣∣
y=Ψ(x)

.

Put rN = uN − ζ FN . Then we get from (19)

〈ΛγfN , fN 〉 =

∫
Ω

γ∇(ζ FN ) · ∇(ζ FN ) dx+

∫
Ω

γ∇rN · ∇(ζ FN ) dx = I1 + I2.

It suffices to show that

lim
N→∞

N−1I1 =

∫
Rn−1

γ(y′, 0)
η(y′)2√

det (gij(y′, 0))
dy′,(22)

lim
N→∞

N−1I2 = 0.(23)

We denote the Jacobian of the diffeomorphism y = Ψ(x) by ∇Ψ, which is given by

(24) ∇Ψ =

(
∂yi
∂xj

)
i↓j→1,2,··· ,n

.

Then ∇ = ∇x = t∇Ψ ∇y, where the superscript t denotes transposition. By the
change of the coordinate systems between x and y, integral I1 becomes

I1 =

∫
N
γ(y) t∇Ψ∇y(ζ FN ) · t∇Ψ∇y(ζ FN ) |det∇Ψ|−1 dy

=

∫
N
γ(y)

(
∇Ψ t∇Ψ

|det∇Ψ|
∇y(ζ FN )

)
· ∇y(ζ FN ) dy,(25)

where N is a relatively open neighborhood of x0 ∈ ∂Ω defined by (15). Equations
(13) and (24) imply that |det∇Ψ|−1∇Ψ t∇Ψ = (det(gij))−1/2

(
gij
)
. Henceforth, we

use the n× n symmetric matrix γ̃

(26) γ̃(y) = γ(y) (det(gij))−1/2
(
gij
)
.
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Then I1 =
∫
N γ̃(y)∇y(ζ FN ) · ∇y(ζ FN ) dy. Since ζ = 1 for 0 ≤ yn ≤ δ, it is

convenient to put D = {|y′| ≤ d, 0 ≤ yn ≤ δ}, D′ = {|y′| ≤ d, δ ≤ yn} and
decompose I1 as

(27) I1 =

∫
D

γ̃(y)∇yFN ·∇yFN dy+

∫
D′
γ̃(y)∇y(ζ FN )·∇y(ζ FN ) dy = I3+I4.

Now (21) implies the following two equations:

∇yFN =

(
N

[
i∇y′φ
−1

]
η(y′) +

[
∇y′η

0

])
eiNφ(y′)e−Nyn ,(28)

∇y(ζ FN ) =

(
N

[
i∇y′φ
−1

]
ζ(yn)η(y′) +∇y(ζ η)

)
eiNφ(y′)e−Nyn .(29)

Thus we see that

I3 = N2

∫
D

γ̃(y)

[
i∇y′φ
−1

]
·
[
−i∇y′φ
−1

]
η(y′)2e−2Nyn dy

+

∫
D

γ̃(y)

[
∇y′η

0

]
·
[
∇y′η

0

]
e−2Nyn dy.(30)

In deriving (30), we have used the fact that the term of the order O(N) in the
integrand of I3 vanishes, because

γ̃(y)

[
∇y′η

0

]
·
[
−i∇y′φ
−1

]
+ γ̃(y)

[
i∇y′φ
−1

]
·
[
∇y′η

0

]
= γ̃(y)

[
∇y′η

0

]
·
[

0
−2

]
= 0,

the last equality of which follows from (14) and (26).
After the scaling transformation zn = N yn we get for large N

I3 = N

∫ Nδ

0

(∫
|y′|≤d

γ̃(y′,
zn
N

)

[
i∇y′φ
−1

]
·
[
−i∇y′φ
−1

]
η(y′)2 dy′

)
e−2zn dzn +O(

1

N
).

The order of the last term in the right hand side follows from γ̃(y) ∈ L∞(D) and
zn = N yn. The dominated convergence theorem and

∫∞
0
e−2zn dzn = 1

2 imply

lim
N→∞

N−1I3 =
1

2

∫
|y′|≤d

γ̃(y′, 0)

[
i∇y′φ
−1

]
·
[
−i∇y′φ
−1

]
η(y′)2 dy′.

By (14) and (26), the integrand on the right hand side becomes

(31) γ(y′, 0)

 n−1∑
i,j=1

gij(y′, 0)
∂φ

∂yi

∂φ

∂yj
+ 1

 η(y′)2√
det
(
gij(y′, 0)

) .
Therefore, from eikonal equation (16) we obtain

(32) lim
N→∞

N−1I3 =

∫
|y′|≤d

γ(y′, 0)
η(y′)2√

det (gij(y′, 0))
dy′.

This, combined with (27) and I4 = O(Ne−2δN ) (N → +∞), proves (22).
To prove (23), we follow basically the methods in [9] and [43]. From (20), (21)

and rN = uN − ζ FN it follows that rN ∈ H1
0 (Ω) satisfies ∇ · (γ∇rN ) = −∇ ·

(γ∇(ζ FN )) in Ω. The Lax-Milgram theorem ([21], §§5.7, 5.8) implies that

(33) ‖rN‖H1
0 (Ω) ≤ C‖∇ · (γ∇(ζ FN ))‖H−1(Ω).

Here and hereafter we denote by C any positive constants (depending on γ,Ψ, ζ
or η) without distinguishing between them. We use the dual pairing of H−1(Ω)
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with H1
0 (Ω) to write I2 as I2 = −

〈
∇ · (γ∇(ζ FN )), rN

〉
H−1−H1

0
. Then |I2| ≤ ‖∇ ·

(γ∇(ζ FN ))‖H−1(Ω)‖rN‖H1
0 (Ω) and it follows from (33) that

(34) |I2| ≤ C‖∇ · (γ∇(ζ FN ))‖2H−1(Ω).

Hence we shall estimate ‖∇ · (γ∇(ζ FN ))‖H−1(Ω).

For any v ∈ H1
0 (Ω), it follows after changing coordinates (see (24)–(26)) that

〈∇ · (γ∇(ζ FN )), v〉H−1−H1
0

= −
∫

Ω

γ∇(ζ FN ) · ∇v dx

= −
∫
N
γ̃(y)∇y(ζ FN ) · ∇yv dy

= −
∫
N

(
γ̃(y′, yn)− γ̃(y′, 0)

)
∇y(ζ FN ) · ∇yv dy −

∫
N
γ̃(y′, 0)∇y(ζ FN ) · ∇yv dy

= I5(v) + I6(v).

Hence

(35) ∇ · (γ∇(ζ FN )) = I5 + I6, I5, I6 ∈ H−1(Ω).

By the Schwarz inequality

|I5(v)|2 ≤ C
∫
N
|γ̃(y′, yn)− γ̃(y′, 0)|2 |∇y(ζ FN )|2 dy‖v‖2H1

0 (Ω),

and we get ‖I5‖2H−1(Ω) ≤ C
∫
N |γ̃(y′, yn)− γ̃(y′, 0)|2 |∇y(ζ FN )|2 dy. From (29) and

the scaling transformation zn = N yn we have

‖I5‖2H−1(Ω) ≤ C

∫ 2δ

0

∫
|y′|≤d

|γ̃(y′, yn)− γ̃(y′, 0)|2

×
(
N2(|∇y′φ|2 + 1)ζ(yn)2η(y′)2 +O(N)

)
e−2Nyndy′dyn

= C

∫ 2Nδ

0

∫
|y′|≤d

|γ̃(y′,
zn
N

)− γ̃(y′, 0)|2

×
(
N(|∇y′φ|2 + 1)ζ

(zn
N

)2

η(y′)2 +O(1)
)
e−2zndy′dzn(36)

for large N . Therefore, the dominated convergence theorem and the assumption in
(i) of the theorem imply that

(37) N−1/2 ‖I5‖H−1(Ω) = o(1) (N → +∞).

Now we shall estimate I6(v). From (29) it follows that

I6(v) = −N
∫
N
γ̃(y′, 0)

[
i∇y′φ
−1

]
· ∇yv ζ(yn)η(y′) eiNφ(y′)e−Nyn dy

−
∫
N
γ̃(y′, 0)∇y(ζ η) · ∇yv eiNφ(y′)e−Nyndy = I7(v) + I8(v).(38)

Inverse Problems and Imaging Volume 5, No. 2 (2011), 485–510



Recovering 3D Conductivity at the Boundary 493

Since v ∈ H1
0 (Ω) and ζ(yn)η(y′) v = 0 on ∂N , integrating by parts leads to

I7(v) = N

∫
N

[
∇y · γ̃(y′, 0)

[
i∇y′φ
−1

]]
ζ(yn)η(y′) eiNφ(y′)e−Nyn v dy

+ N

∫
N
γ̃(y′, 0)

[
i∇y′φ
−1

]
· ∇y(ζη) eiNφ(y′)e−Nyn v dy

+ N2

∫
N
γ̃(y′, 0)

[
i∇y′φ
−1

]
·
[
i∇y′φ
−1

]
ζ(yn)η(y′) eiNφ(y′)e−Nyn v dy.

The last integral on the right hand side vanishes, because (14), (26) and eikonal
equation (16) imply that

γ̃(y′, 0)

[
i∇y′φ
−1

]
·
[
i∇y′φ
−1

]
=

γ(y′, 0)√
det
(
gij(y′, 0)

)
− n−1∑

i,j=1

gij(y′, 0)φyiφyj + 1

 = 0.

To estimate the first two terms on the right hand side, as in [9] and [43] we use the
following consequence of Hardy’s inequality [18]: ‖v/yn‖L2(N ) ≤ 2‖∂v/∂yn‖L2(N )

for v ∈ H1
0 (Ω). Then it holds that

(39)

∥∥∥∥ vyn
∥∥∥∥
L2(N )

≤ C‖v‖H1
0 (Ω) (v ∈ H1

0 (Ω)).

Since ∇y′γ(y′, 0), γ(y′, 0) ∈ L2({|y′| ≤ d}), the Schwarz inequality and (39) imply
that

|I7(v)| ≤ CN
(
‖yn∇y′ γ̃(y′, 0) e−Nyn‖L2(N ) + ‖yn γ̃(y′, 0) e−Nyn‖L2(N )

)
‖v‖H1

0 (Ω),

and it follows from zn = N yn that

|I7(v)| ≤ CN−1/2
(
‖zn∇y′ γ̃(y′, 0) e−zn‖L2(|y′|≤d, 0≤zn≤2Nδ)

+‖zn γ̃(y′, 0) e−zn‖L2(|y′|≤d, 0≤zn≤2Nδ)

)
‖v‖H1

0 (Ω) ≤ CN−1/2‖v‖H1
0 (Ω).(40)

Here we have used the relation

(41) ‖ · ‖L2(N ) = N−1/2‖ · ‖L2(|y′|≤d, 0≤zn≤2Nδ).

We get from the Schwarz inequality |I8(v)| ≤ C‖γ̃(y′, 0) e−Nyn‖L2(N )‖v‖H1
0 (Ω)

and from (41) we have |I8(v)| ≤ CN−1/2‖v‖H1
0 (Ω). Combining this with (38) and

(40) we obtain

(42) ‖I6‖H−1(Ω) = O(N−1/2) (N → +∞).

Thus, from (35), (37) and (42) we have ‖∇ · (γ∇(ζ FN ))‖H−1(Ω) = o(N1/2). Hence
from (34) we get I2 = o(N) as N → +∞. This proves (23).

Next we prove (ii). From the weak formulation of Λγ it follows that

(43) 4〈ΛγgN , gN 〉−2〈ΛγfN , fN 〉 =

∫
Ω

4γ∇vN ·∇(ζ GN )−2γ∇uN ·∇(ζ FN ) dx.

Here uN ∈ H1(Ω) is the solution to (20), FN is defined by (21), vN ∈ H1(Ω) is
the solution to ∇ · (γ∇vN ) = 0 in Ω with vN |∂Ω = gN , and GN (x) is an H1(Ω)

extension of gN , for which we choose GN (x) = ei
N
2 φ(y′) e−

N
2 ynη(y′)|y=Ψ(x). Put
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rN = uN − ζ FN and sN = vN − ζ GN . It follows that rN , sN ∈ H1
0 (Ω). Equation

(43) can be written as

4〈ΛγgN , gN 〉 − 2〈ΛγfN , fN 〉

=

∫
Ω

(
4 γ∇(ζ GN ) · ∇(ζ GN )− 2 γ∇(ζ FN ) · ∇(ζ FN )

)
dx

−2

∫
Ω

γ∇rN · ∇(ζ FN ) dx+ 4

∫
Ω

γ∇sN · ∇(ζ GN ) dx = J1 − 2 J2 + 4 J3.

We shall show that

lim
N→∞

J1 =

∫
Rn−1

∂γ

∂yn
(y′, 0)

η(y′)2√
det(gij(y′, 0))

dy′

+
1

2

∫
Rn−1

γ(y′, 0)
∂

∂yn

∑n−1
i,j=1 g

ij φyiφyj + 1√
det(gij)

∣∣∣∣
yn=0

η(y′)2 dy′(44)

and limN→∞ J2 = 0 and limN→∞ J3 = 0.
As in the proof of (i), after the change of the coordinate system, using the regions

D and D′ in (27) we write J1 as

J1 =

∫
D

(
4 γ̃(y)∇yGN · ∇yGN − 2 γ̃(y)∇yFN · ∇yFN

)
dy

+

∫
D′

(
4 γ̃(y)∇y(ζ GN ) · ∇y(ζ GN )− 2 γ̃(y)∇y(ζ FN ) · ∇y(ζ FN )

)
dy

= J4 + J5.(45)

From (28), (29),

∇yGN =

(
N

2

[
i∇y′φ
−1

]
η(y′) +

[
∇y′η

0

])
ei

N
2 φ(y′)e−

N
2 yn ,

and

∇y(ζ GN ) =

(
N

2

[
i∇y′φ
−1

]
ζ(yn)η(y′) +∇y(ζ η)

)
ei
N
2 φ(y′)e−

N
2 yn

it follows that

J4 = N2

∫
D

γ̃(y)

[
i∇y′φ
−1

]
·
[
−i∇y′φ
−1

]
η(y′)2(e−Nyn − 2e−2Nyn) dy

+ 2

∫
D

γ̃(y)

[
∇y′η

0

]
·
[
∇y′η

0

]
(2e−Nyn − e−2Nyn) dy.(46)

From the assumption there exists a function h(y′, yn) of yn valued in L2({|y′| ≤ d})
such that

(47) γ̃(y′, yn)− γ̃(y′, 0) = yn

(
∂γ̃

∂yn
(y′, 0) + h(y′, yn)

)
with h(y′, yn) → 0 in L2({|y′| ≤ d}) as yn → +0. Then the first term on the right
hand side of (46) becomes

N2

∫ δ

0

∫
|y′|≤d

yn

(
∂ γ̃

∂yn
(y′, 0) + h(y′, yn)

)[
i∇y′φ
−1

]
·
[
−i∇y′φ
−1

]
η(y′)2 dy′

×(e−Nyn − 2e−2Nyn) dyn +O(Ne−δN )
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for large N . Then after the scaling transformation zn = N yn we get for large N

J4 =

∫ Nδ

0

(∫
|y′|≤d

(
∂ γ̃

∂yn
(y′, 0) + h(y′,

zn
N

)

)[
i∇y′φ
−1

]
·
[
−i∇y′φ
−1

]
η(y′)2 dy′

)
× zn(e−zn − 2e−2zn) dzn + O(N−1).

The dominated convergence theorem and
∫∞

0
zn
(
e−zn − 2e−2zn

)
dzn = 1

2 imply

lim
N→∞

J4 =
1

2

∫
|y′|≤d

∂ γ̃

∂yn
(y′, 0)

[
i∇y′φ
−1

]
·
[
−i∇y′φ
−1

]
η(y′)2 dy′.

From (26) we have

∂ γ̃

∂yn
(y′, 0) =

∂ γ

∂yn
(y′, 0)

(
gij(y′, 0)

)√
det(gij(y′, 0))

+ γ(y′, 0)
∂

∂yn

(
gij
)√

det(gij)

∣∣∣∣
yn=0

.

Recalling that (
gij(y′, 0)

) [ i∇y′φ
−1

]
·
[
−i∇y′φ
−1

]
= 2

which follows from (14) and (16) (cf. (31) and (32)), we obtain

lim
N→∞

J4 =

∫
|y′|≤d

∂γ

∂yn
(y′, 0)

η(y′)2√
det(gij(y′, 0))

dy′

+
1

2

∫
|y′|≤d

γ(y′, 0)
∂

∂yn

∑n−1
i,j=1 g

ij φyiφyj + 1√
det(gij)

∣∣∣∣
yn=0

η(y′)2 dy′

This, combined with (45) and J5 = O(Ne−δN ) (N → +∞), proves (44).
To prove limN→∞ J2 = 0 and limN→∞ J3 = 0, recalling that we already have

(48) |J2| ≤ C‖∇ · (γ∇(ζ FN ))‖2H−1(Ω)

(see (34)), we shall estimate ‖∇ · (γ∇(ζ FN ))‖H−1(Ω) under the conditions in (ii) of

the theorem. For any v ∈ H1
0 (Ω), as in (35) we can write

(49) ∇ · (γ∇(ζ FN )) = J6 + J7,

where J6, J7 ∈ H−1(Ω) and

J6(v) = −
∫
N

(
γ̃(y′, yn)− γ̃(y′, 0)

)
∇y(ζ FN ) · ∇yv dy,

J7(v) = −
∫
N
γ̃(y′, 0)∇y(ζ FN ) · ∇yv dy.

Then ‖J6‖H−1(Ω) has the estimate (36) for large N . We get from (47)

‖J6‖2H−1(Ω) ≤ CN
−1

∫ 2Nδ

0

(∫
|y′|≤d

∣∣∣∣ ∂ γ̃∂yn (y′, 0) + h(y′,
zn
N

)

∣∣∣∣2
×
(
(|∇y′φ|2 + 1)η(y′)2 +O(N−1)

)
dy′

)
z2
n e
−2zn dzn

for large N . Therefore, the dominated convergence theorem implies that
‖J6‖H−1(Ω) = O(N−1/2). The proof of ‖J7‖H−1(Ω) = O(N−1/2) is exactly the
same as that of (42). These estimates together with (49) imply

‖∇ · (γ∇(ζ FN ))‖H−1(Ω) = O(N−1/2) (N → +∞).
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Therefore, from (48) we get J2 = O(N−1) as N → +∞. This proves limN→∞ J2 =
0. The proof of limN→∞ J3 = 0 is parallel.

4. Simulation of measurement data.

4.1. Solution of the boundary value problem with FEM. We need a varia-
tional equation for approximating the solution of (1) with FEM. We use test func-
tions v ∈ H1(Ω) and denote H = H1(Ω)×RL. Multiplying (1) with a test function
and integrating over the domain Ω yields

(50)

∫
Ω

v∇ · (γ∇u) dx = 0.

Equation (50) is referred to as the variational form of (1), and using Green’s formula
we can write it in the form

(51)

∫
Ω

γ∇u · ∇v dx−
∫
∂Ω

γ
∂u

∂ν
v dS = 0.

The domain Ω is discretized into small tetrahedral elements and the potential
distribution u in Ω is expressed as linear combination of piecewise linear basis
functions ϕj j = 1, ..,K:

(52) u(x) ≈
K∑
j=1

ujϕj(x), x ∈ R3.

Here K is the number of nodal points xj in the finite element mesh and uj = u(xj).
The piecewise linear basis functions ϕj ∈ H1(Ω) are constructed uniquely by the
requirement ϕj(x`) = δj`; we denote Ej := supp(ϕj) ⊂ Ω.

Inserting the approximation (52) into (51) and using the basis functions ϕj as
test functions (Galerkin FEM scheme, see [45]) yields

(53)

K∑
k=1

uk

∫
Ω

γ∇ϕk · ∇ϕj dx−
K∑
k=1

uk

∫
∂Ω

γ
∂ϕk
∂ν

ϕj dS = 0.

This can be written in the matrix form

(54) Au = 0 ,

where the matrix A is defined as

(55) A(j, k) =

∫
Ek∪Ej

γ∇ϕk · ∇ϕj dx−
∫
∂(Ek∪Ej)∩∂Ω

γ
∂ϕk
∂ν

ϕj dS

and u = [u1, ..., uK ]T . The solution of Au = 0 is not unique, but using the Dirichlet
boundary condition u = φN on x ∈ ∂Ω and u = 0 on the horizontal boundaries
(top and bottom) we can write

(56) Ãũ = −Aφ̃φ̃N ,

where Aφ̃ includes the columns of the matrix A that correspond with the nodes on

the lateral and horizontal boundaries, Ã = A\Aφ̃, φ̃N = (φN ,0), 0 = (0, ..., 0)T ∈
RM , M is the number of the nodes on the horizontal boundaries and ũ = u\φ̃N .
The problem (56) is overdetermined so the rows that correspond with the nodes

at the boundary ∂Ω can be eliminated from the matrices Ã and Aφ, resulting in a
solvable linear system of equations.
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Due to the above reduction, the boundary integrals in (55) need not to be com-
puted. The integrations over tetrahedra in equation (55) are computed by using
the mapping which relates the actual element (global) to a standard element, see
[49]. We represent the conductivity distribution using piecewise linear basis.

Our local reconstruction method involves applying rather oscillatory Dirichlet
data supported in small subsets of the boundary. Hence, in order to achieve an
adequate accuracy with reasonable computational cost, it is advantageous to use
non-uniform finite element meshes with higher density near the support of the
Dirichlet data. One example of a non-uniform mesh of the type we use is illustrated
in Figure 1.
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Figure 1. Computational grid corresponding to one boundary
node. Number of the nodes is 950.

4.2. Choosing cut-off functions. We use the cut-off function η(τ, s) = η1(s)η2(τ)
with

η1(s) =

{
c1 (T − πR

2ε2
)2(T + πR

2ε2
)2 for − πR

2ε2
< T < πR

2ε2
,

0 otherwise,
(57)

η2(τ) =

{
c2 (Z − πR

2ε1
)2(Z + πR

2ε1
)2 for − πR

2ε1
< Z < πR

2ε1
,

0 otherwise,
(58)

where T = s− t and s, t ∈ [0, 2πR] and Z = τ − z and τ, z ∈ [0, h]. The constants
cj are chosen so that

∫
η2
j (s) ds = 1 for j = 1, 2, and the parameters ε1 and ε2 can

be used to adjust the width of the functions η1 and η2.
Figure 2 shows the cut-off functions corresponding to different ε1 and ε2 in cylin-

drical geometry (3) with R = 1 and h = 1.7671.

4.3. Simulating noisy voltage-to-current measurements. We apply the
Dirichlet data specified by the theory and calculate the potentials in inner nodes as
a solution of the boundary value problem as explained in Section 4.1.

We evaluate the normal derivative of the potentials ∂u
∂ν for the computation of

the current density. The gradient of u can be approximated as follows: In the
case of piecewise linear basis functions the gradient ∇u is constant in each element
and discontinuous on element boundaries. We estimate the value of the gradient
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Figure 2. Plot of the cut-off function η(τ, s) with various ε1 and
ε2. First row: ε1 = ε2=2. Second row: ε1 = ε2 = 4. Third row:
ε1 = ε2 = 6. Fourth row: ε1 = ε2 = 8.

in boundary nodes as a mean value of the all elements connected to the node in
question. The normal derivative of the potentials in each node (τ, s, 0) on the lateral
surface of Ω can be then computed from the equation

(59)
∂u

∂ν
(τ, s, 0) = ∇u(τ, s, 0) · ν(τ, s, 0) .

We add simulated measurement noise EN to the computed current density.

(60) EN =

N∑
l=−N+1

σale
ilθ ,

where al are independent normally distributed random variables with mean zero
and standard deviation 1, and σ > 0 is a constant used to tune the noise amplitude.

5. Numerical experiments. In this section we test the reconstruction formulas
(7) and (8) numerically with a sequence of three-dimensional conductivity distribu-
tions with increasing complexity. As difficulties arise, we design corrective steps to
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overcome them. This process leads to a novel noise-robust reconstruction algorithm
that is presented in detail in Section 6.

For a given conductivity γ we define

(61) g̃N :=
1

N

∫
R2

φN ΛγφN dτds.

As the surface measure on the lateral boundary Γ is dτds, by formula (7) we have

g̃N ≈
∫
R2

γ(τ, s, 0) η(τ, s)2 dτds .

Furthermore, set

(62) h̃N := (2 +
t2

2 − t12 − 1

2NR
)

∫
R2

φNΛγφNdτds− 4

∫
R2

ψN ΛγψNdτds.

for any unit vector (t1, t2). Then by formula (8) we have

h̃N ≈
∫
R2

∂γ

∂ν
(τ, s, 0) η(τ, s)2 dτds.

We work in cylindrical geometry (3) with R = 1 and h = 1.7671. We use standard
deviation σ = 0.0001 in (60), giving relative noise level 0.01 %.

5.1. Homogeneous conductivity. Our first experiment uses simply the homoge-
neous conductivity distribution γ0 ≡ 1. We substitute Λγ0 to formula (7) and call

the result g̃
(0)
N . Then we have g̃

(0)
N → 1 as N grows, and we can study numerically

the speed of convergence using various values of the related parameters.
Let us first get an idea how large N is practically useful. Figure 3 shows the

Dirichlet data for several values of N . Apparently there is hope of representing the
data with N = 20 with 64 electrodes in a 8 × 8 configuration, but the data with
N = 50 seems to need way too many electrodes to be practically feasible. This
rough derivation is based on the simple idea that each minimum and maximum of
the Dirichlet data needs to be evaluated on at least one electrode. Consequently we
will restrict our experiments to 0 < N ≤ 20.

Next we examine the convergence rate g̃
(0)
N → 1 as N grows. Figure 4 shows

g̃
(0)
N as function of N computed with finite element mesh with varying numbers

of elements. We conclude that the mesh comprising 16285 nodes gives acceptable
accuracy in the range 14 ≤ N ≤ 20, and we will use that mesh in the sequel.

We study the effect of cut-off function on speed of convergence by choosing
different values for ε1 and ε2 in (57) and (58), respectively. Figure 5 illustrates that
using a wider cut-off function leads to faster convergence. Thus there is a trade-
off between (a) more accurate reconstruction using a narrow cut-off function that
better approximates Dirac’s delta, and (b) higher rate of convergence.

We proceed to test the reconstruction of the normal derivative. We substitute

Λγ0 to formula (8) and call the result h̃
(0)
N . Then by formula (8) we have h̃

(0)
N → 0

as N →∞. Line “ * * ” in Figure 6 shows h̃
(0)
N as function of N . We see that h̃

(0)
N

converges slowly and the apparent limit value is −5 instead of the value 0 predicted
by theory. We conclude that more experimenting is needed to find out what’s going
on.
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Figure 3. Plot of the Dirichlet data φN with three different values
of N . t1 = t2 = 1√

2
and ε1 = ε2 = 4. First row: N = 10. Second

row: N = 14. Third row: N = 20. Fourth row: N = 50

5.2. Radial conductivities with unit trace. We define a collection of radially
varying conductivity distributions when 0 ≤ r ≤ 4R

5 (constant distribution when
4R
5 < r ≤ R) for further testing of formula (62):

γ1(τ, s, r) := R− r, γ1|∂Ω = 1,
∂γ1

∂ν
|∂Ω = 1,

γ2(τ, s, r) := (R− r)2, γ2|∂Ω = 1,
∂γ2

∂ν
|∂Ω = 2,

γ3(τ, s, r) := (R− r)3, γ3|∂Ω = 1,
∂γ3

∂ν
|∂Ω = 3.

Figure 6 shows the convergence of h̃N as function of N computed using formula

(62) for γ1 and γ2 and γ3. We see that the various h̃N converge slowly to limit
values with systematic error of −5.
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Figure 4. Estimated convolution g̃N defined in (61) as a function
of N corresponding to one node on the boundary with different
computational grids, ε1 = ε2 = 4. Correct value of conductivity is
one. Line “ * * ”: 950 nodes in grid. Line “ + + ”: 2946 nodes in
grid. Line “- -”: 9324 nodes in grid. Line “o o”: 16285 nodes in
grid.Line “x x”: 21385 nodes in grid.

Figure 5. Estimated convolution g̃N computed with formula (61)
as a function of N corresponding to one node on the boundary with
computational grid of 16285 nodes and various ε1 and ε2. Correct
value of conductivity is one. Line “ * * ”: ε1 = ε2 = 2. Line
“ + + ”:ε1 = ε2 = 4 . Line “- -”: ε1 = ε2 = 6. Line “o o”:
ε1 = ε2 = 8.

However, the evidence in Figure 6 suggests the relative values of h̃N are roughly
correct throughout the computational interval 2 ≤ N ≤ 20! This surprising obser-
vation can be used to calibrate the results as follows. Suppose we have available
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Figure 6. Estimated normal derivative h̃N computed with for-
mula (62) as a function of N corresponding to one node on the
boundary: computational grid of 16285 nodes, R = 1 and ε1 =
ε2 = 4. Line “ * * ”: γ0(τ, s, r) = 1 and ∂γ0

∂ν |∂Ω = 0. Line “ + + ”:

γ1(τ, s, r) = R−r and ∂γ1
∂ν |∂Ω = 1. Line “- -”: γ2(τ, s, r) = (R−r)2

and ∂γ2
∂ν |∂Ω = 2. Line “o o”: γ3(τ, s, r) = (R− r)3 and ∂γ3

∂ν |∂Ω = 3.

measurements Λγ0 from the “dummy load” conductivity γ0 ≡ 1. We can compute

h̃
(0)
20 ≈ −5 corresponding to γ0. Since the relative values of h̃N are close to correct

for γ1 and γ2 and γ3, we suggest that the formula

(63)
∂γ

∂ν
(x0) ≈ h̃20(x0)− h̃(0)

20 (x0)

serves as a calibrated reconstruction method of the normal derivative for any con-
ductivity γ with trace 1.

5.3. Radial conductivities with varying traces. It remains to study the nu-
merical properties of formula (62) in the case of conductivities whose trace is not 1.
To this end, we define a collection of conductivities with varying traces as follows:

γ4(τ, s, r) := R− r + 1, γ4|∂Ω = 2,
∂γ4

∂ν
|∂Ω = 1,

γ5(τ, s, r) := R− r + 2, γ5|∂Ω = 3,
∂γ5

∂ν
|∂Ω = 1,

γ6(τ, s, r) := R− r + 3, γ6|∂Ω = 4,
∂γ6

∂ν
|∂Ω = 1.

The integral in formula (61) as function of N is shown in Figure 7. The slope
of the curve increases when conductivity value on the boundary node increases;
the values of the integral actually seem to depend linearly on the conductivity
value at the boundary. For instance, for fixed N , the integral corresponding to
γ4 satisfying γ4(τ, s, 0) = 2 is twice as large as the integral corresponding to γ1

satisfying γ1(τ, s, 0) = 1.
Same phenomenon can be found when normal derivatives are estimated, see Fig.

8. Hence we suggest that h̃
(0)
20 in the calibrated algorithm (63) should be multiplied
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Figure 7. The values of the integral in formula (61) as a func-
tion of N corresponding to one node on the boundary with com-
putational grid of 16285 nodes, R = 1 and ε1 = ε2 = 4. Line
“ * * ”: conductivity distribution γ1(τ, s, r) = R − r, on the
boundary γ1(τ, s, 0) = 1. Line “ + + ”: conductivity distribu-
tion γ4(τ, s, r) = (R − r) + 1, on the boundary γ4(τ, s, 0) = 2 .
Line “- -”: conductivity distribution γ5(τ, s, r) = (R − r) + 2, on
the boundary γ5(τ, s, 0) = 3. Line “o o”: conductivity distribution
γ6(τ, s, r) = (R− r) + 3, on the boundary γ6(τ, s, 0) = 4.

by estimated conductivity g̃20(x0).

(64)
∂γ

∂ν
(τ, s) ≈ h̃20(x0)− h̃(0)

20 (x0)g̃20(x0).

6. The calibrated reconstruction algorithm. The numerical experiments pre-
sented in Section 5 inspire us to suggest the following calibrated method for recov-
ering the trace and normal derivative of a given conductivity γ based on localized
boundary measurements.

1. Use the dummy load γ0 ≡ 1 to find a big enough N0 > 0 for g̃
(0)
N0

computed
by formula (7) to be reasonably close to 1.

2. Use formula (7) to recover γ|Γ approximately as γ(τ, s, 0) ≈ g̃N0(τ, s).

3. Substitute the dummy load to formula (8) and denote the result by h̃
(0)
N0

.
4. Use formula (8) to recover the normal derivative of γ approximately as

∂γ

∂ν
(τ, s) ≈ h̃N0

(τ, s)− h̃(0)
N0

(τ, s)g̃N0
(τ, s).

We tested the calibrated reconstruction algorithm with the simple cases discussed
in Section 5. Figure 9 shows the calibrated normal derivatives for the radial conduc-
tivities with unit trace as function of N . The bigger change in conductivity in the
normal direction the smaller gets the current density on the boundary in the case
of finite N . Hence the integral in formula (61) gets smaller values even if the trace
of the conductivity on the boundary is same in all cases. Therefore the calibrated
algorithm (64) underestimates the normal derivatives of the conductivity.
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Figure 8. Estimated normal derivative h̃N computed with for-
mula (62) as a function of N corresponding to one node on the
boundary for the conductivity distributions: computational grid of
16285 nodes, R = 1 and ε1 = ε2 = 4. Line “ * * ”: γ1(τ, s, r) = R−r
and ∂γ1

∂ν |∂Ω = 1. Line “ + + ”: γ4(τ, s, r) = (R − r) + 1 and
∂γ4
∂ν |∂Ω = 1. Line “- -”: γ5(τ, s, r) = (R − r) + 2 and ∂γ5

∂ν |∂Ω = 1.

Line “o o”: γ6(τ, s, r) = (R− r) + 3 and ∂γ6
∂ν |∂Ω = 1.

Figure 10 shows the calibrated normal derivatives for the radial conductivities
with varying trace as function of N . As can be seen from the Table 1, absolute
error between true conductivity and it’s estimated convolution increases when con-
ductivity value increases. Therefore also error in calibrated normal derivative of the
conductivity increases with the conductivity value. See Table 2 for reconstruction
errors between true normal derivatives and calibrated normal derivatives.

Table 1. Absolute errors and relative errors for the reconstruction
of γ|∂Ω when

∂γj
∂ν |∂Ω = 1

|γ − g̃N |N=20
|γ−g̃N |N=20

γ

γ1(τ, s, 0) = 1 0.0915 0.0915
γ4(τ, s, 0) = 2 0.1844 0.0922
γ5(τ, s, 0) = 3 0.2661 0.0887
γ6(τ, s, 0) = 4 0.3479 0.0870

At the moment the approximation properties of the above method are not well
understood. However, we can gather intuition about the method by testing it also
with a more demanding example. We test our calibrated reconstruction algorithm
with a fairly complicated non-homogeneous distribution with three inclusions. Two
of the inclusions touch the boundary and one is located in the middle of the target,
see Figure 11.

We estimate the conductivity and normal derivatives on 1216 boundary points
(64 equidistantly placed points on 19 layers). A nonuniform finite element mesh
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Figure 9. Calibrated normal derivative computed with formula
(64) as a function of N corresponding to one node on the boundary:
computational grid of 16285 nodes, R = 1 and ε1 = ε2 = 4. Line “ *
* ”: γ0(τ, s, r) = 1 and ∂γ0

∂ν |∂Ω = 0. Line “ + + ”: γ1(τ, s, r) = R−r
and ∂γ1

∂ν |∂Ω = 1. Line “- -”: γ2(τ, s, r) = (R − r)2 and ∂γ2
∂ν |∂Ω = 2.

Line “o o”: γ3(τ, s, r) = (R− r)3 and ∂γ3
∂ν |∂Ω = 3.

Table 2. Absolute errors and relative errors for the reconstruction
of ∂γ

∂ν |∂Ω.

|∂γ∂ν − h̃N |N=20
| ∂γ∂ν−h̃N |N=20

∂γ
∂ν

γ0(τ, s, 0) = 1, ∂γ0
∂ν = 0 0.1842 -

γ1(τ, s, 0) = 1, ∂γ1
∂ν = 1 0.3002 0.3003

γ2(τ, s, 0) = 2, ∂γ2
∂ν = 2 0.5078 0.2539

γ3(τ, s, 0) = 3, ∂γ3
∂ν = 3 0.7990 0.2663

γ4(τ, s, 0) = 4, ∂γ4
∂ν = 1 0.5069 0.5069

γ5(τ, s, 0) = 1, ∂γ5
∂ν = 1 0.6978 0.6978

γ6(τ, s, 0) = 1, ∂γ6
∂ν = 1 0.8852 0.8852

is constructed corresponding to each boundary point; the number of nodes in the
meshes is on the average 9000. See Figure 12 for the recovered trace and Figure 13
for the approximate normal derivative reconstructed using the above calibration.

We computed the relative L2(∂Ω) and L∞(∂Ω) errors between true conductivity
distribution γ|∂Ω and its convolution γ ∗ η2. Errors were computed also between
γ ∗ η2 and its approximation g̃N .

(65) E2
γ =
‖γ − γ ∗ η2‖L2(∂Ω)

‖γ‖L2(∂Ω)
E∞γ =

max∂Ω |γ − γ ∗ η2|
max∂Ω |γ|

(66) E2
g(N) =

‖g̃N − γ ∗ η2‖L2(∂Ω)

‖γ‖L2(∂Ω)
E∞g (N) =

max∂Ω |g̃N − γ ∗ η2|
max∂Ω |γ|
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Figure 10. Calibrated normal derivative computed with formula
(64) as a function of N corresponding to one node on the bound-
ary for the conductivity distributions: computational grid of 16285
nodes, R = 1 and ε1 = ε2 = 4. Line “ * * ”: γ1(τ, s, r) = R− r and
∂γ1
∂ν |∂Ω = 1. Line “ + + ”: γ4(τ, s, r) = (R−r)+1 and ∂γ4

∂ν |∂Ω = 1.

Line “- -”: γ5(τ, s, r) = (R − r) + 2 and ∂γ5
∂ν |∂Ω = 1. Line “o o”:

γ6(τ, s, r) = (R− r) + 3 and ∂γ6
∂ν |∂Ω = 1.

Figure 11. Left: True conductivity distribution on five cross-
sectional planes. Right: True conductivity distribution on the lat-
eral boundary.

See Table 3 for reconstruction errors.

Table 3. Relative errors (65) and (66) for the convolution and
reconstruction of γ|∂Ω. Three lowest and three highest boundary
node layers have been removed.

E2
γ E∞γ E2

g(N) E∞g (N)

0.0149 0.1009 0.0242 0.0384

7. Conclusion. Our study of recovering trace and normal derivative of conductiv-
ity from static electric boundary measurements is based on two aspects: theoretical
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Figure 12. True conductivity distribution γ(τ, s, 0) (first row),
convolution (γ|∂Ω ∗ η2)(τ, s) (second row) and estimated conduc-
tivity distribution g̃N (third row) with same colormap.

Figure 13. True normal derivative ∂γ
∂ν (τ, s, 0) (first row) and es-

timated normal derivative h̃N (second row) with same colormap.

and numerical. Theoretically, we show that it is possible to recover convolved
approximations to both trace and normal derivative from localized boundary mea-
surements. Our Theorem 1 is proved under quite general geometric assumptions.

Our numerical experiments suggest that the trace of conductivity can be approx-
imately recovered using Theorem 1 with a finite value of N and simulated data with
realistic noise level. The recovery of the normal derivative seems to be more difficult,
but we are able to introduce a calibration method allowing useful reconstructions
at least for our simulated examples.

The applicability of our method for real-world measured data needs a further
study. However, the voltage distributions applied at the boundary in our simulations
seem to be representable using a 8 × 8 electrode array covering the support of
the localized excitation pattern. Since we included simulated data with realistic
noise level (relative error of the same order than in the ACT3 impedance imager of
Rensselaer Polytechnic Institute [15]), we have a reason to believe that our method
is implementable with a 64-channel impedance tomography device.
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