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Abstract

A method based on the curvelet transform is introduced for estimating from
two-dimensional images the orientation distribution of small anisotropic par-
ticles. Orientation of fibers in paper is considered as a particular application
of the method. Theoretical aspects of the suitability of this method are dis-
cussed and its efficiency is demonstrated with simulated and real images of
fibrous systems. Comparison is made with two traditionally used methods of
orientation analysis, and the new curvelet-based method is shown to perform
clearly better than these traditional methods.

Keywords: curvelet, orientation, multiscale, anisotropic, fiber

1. Introduction

Orientation analysis of complex patterns is usually done by applying the
Fourier transform [1] or gradient based methods like the structure tensors
[2, 3, 4, 5]. Relative strengths of different orientations are measured, e.g.,
by investigating the magnitudes of Fourier-transform coefficients, usually in
polar coordinates. However, during the last two decades, more sophisticated
transforms, especially the wavelet transform [6], have became popular in
many fields where Fourier transforms have traditionally been applied. More-
over, during the last decade, transforms like the curvelet, contourlet and
shearlet transform have been developed and have proved to be well suited
for some applications [7, 8, 9, 10]. The basis functions of these new trans-
forms are tightly localized in both space and frequency domain, and have in
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addition an angle (i.e., orientation) parameter that makes them promising
tools for orientation analysis.

We use in this work the orientation of fibers in paper as the basic appli-
cation and framework. This choice was made because data to be analyzed
in this application are common and challenging. Therefore, if the methods
developed work well in this case, they will probably work in many other
(similar) applications such as, e.g., determination of the orientation of fibers
or nanofibrils in reinforced composites [5, 11]. Furthermore, in papermak-
ing industry it would be advantageous to have a good orientation-analysis
method for on-line measurements during the manufacturing process (paper
webs move up to 2000 m/min).

This article is organized as follows. In the second section we discuss the
data typically related to the present application. In the third section the
curvelet transform together with a few relevant theorems are introduced.
Thereafter, in the fourth section, the curvelet method for orientation distri-
bution is described. In the last section we apply this method to numerically
generated networks of fibers and to a newsprint and organic-fiber sample, and
compare the results to those achieved by other, previously used, methods of
orientation analysis.

2. Optical imaging of fibers

In the paper making process wood fibers, mineral fillers, and other ad-
ditives together form the basic structure of paper. The properties of paper
depend essentially on how fibers are distributed. For example, orientation
difference in separate layers of paper affects its bending stiffness, and such a
difference between the two surfaces of paper makes it curved [12]. For this
reason, it should be important in papermaking to be able to measure and to
thereby facilitate control of fiber orientation in the paper web.

Fibers in paper form a more or less random network with predominantly
planar orientation of fibers. As an off-line measurement, it is possible to
study also the three-dimensional fiber structure of paper with tomographic
imaging [13], but this is slow and the sample needs to be very small. With
ccd cameras large areas of paper can be imaged fast, but these images mostly
reveal the planar orientation of fibers only. Fortunately such information is
often enough in practice. In an optimal case, determination of fiber orien-
tation would enable on-line adjustment of the paper-making process. With
currently available ccd cameras the whole paper web in suitable locations
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of the paper machine can be imaged on-line, but then the resolution of the
recorded images would not be high enough for analysis of fiber orientation.
However, part of the web can be imaged with high resolution, and as cam-
era technology keeps on developing rapidly, orientation analysis of the whole
paper web is expected to become feasible fairly soon.

To make fibers more clearly visible in paper, through illumination is pre-
ferred over reflection images. Figure 1 exemplifies a typical image, found by
through illumination, from which the orientation should be determined. No-
tice that fibers seem to be clearly visible. The light passing through paper is,

Figure 1: An optical image of paper with through illumination.

however, strongly scattered by the abundant fiber-air interfaces (wet paper is
more transparent due to a better match of the dielectric properties of water
and fibers), and therefore only the fibers that are close to the outlet surface
can in practice be detected. We can demonstrate the ’diffusive’ passage of
light across paper by partly eclipsing the light source with a metal tape. In
a thick paper the edge of the tape appears much more blurred than in a
thin paper (see Fig. 2). It is evident that, with through illumination, only
near-surface orientation can be determined from the images, which must be
taken into account in practical applications.
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(a) (b)

Figure 2: Blurring of a sharp edge in optical tranmission through paper: (a) A thin grade
of paper and (b) a thick grade of paper.

3. Mathematical methods

3.1. Curvelet transform

There exist different constructions of a continuous curvelet transform (cct).
We review here the one presented in Candès and Donoho [14, 15], since it
displays most clearly the essential properties of the transform.

Cct is defined in polar coordinates (r, ! ) of the frequency domain. Let W
be a non-negative, infinitely smooth real-valued function supported inside the
interval

!
1
2, 2

"
, called the radial window. Further, let V be a a non-negative,

infinitely smooth real-valued function supported on the interval [! 1, 1], called
the angular window. We assume the following admissibility conditions:

# ∞

0
W (r )2 dr

r
= 1 and

# 1

−1
V (! )2 d! = 1. (1)

We will use a positive parameter a called the scale. At each scale 0 < a <
a0, the so-called mother curvelet " a00 is defined in the frequency-domain by

$" a00 (r cos(! ), r sin(! )) = a
3

4 W (ar)V
!
!/

"
a
"

, (2)

where r # 0 and ! $ [0, 2#). Now $" a00 is supported in the frequency-domain
as illustrated in Figure 3. The spatial-domain mother curvelet " a00 is calcu-
lated from (2) by the inverse Fourier transform.
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Figure 3: Left: Support of γ̂abθ in the frequency domain. Right: The area that contains
most of the ’energy’ of γabθ.

Now a rotation parameter, $ $ [0, 2#), and a translation parameter, b $
R2, are included so as to achieve a definition for the whole curvelet " abθ:

" abθ(x) = " a00 (R−θ (x ! b)) , for x $ R
2, (3)

where Rθ is the matrix of planar counter-clockwise rotation by the angle $.
The curvelet transform Γf (a, b, $) of f is then defined by

Γf (a, b, $) := %" abθ, f &=
#

R2

f (x)" abθ(x)dx (4)

for all 0 < a < a 0 and b$ R2 and $ $ [0, 2#).
We remark that the curvelet transform has an inverse transform as well,

although we do not need it in our application.
Because of the compact support of "̂ abθ, the support of " abθ cannot be com-

pact. However, the following lemma provides information about the essential
localization of " abθ. See [16] for the proof and Figure 3 for an illustration.

Lemma 3.1. For each N = 1, 2, ... there is a constant CN such that
%
%
%
%
%ν1+ ν2" abθ(x)

%xν11 %xν22

%
%
%
%'

CNa−3/4−ν1−ν2

1 +
&
&D1/aR−θ(x ! b)

&
&2N , (5)
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where D1/a = diag
'

1
a , 1√

a

(
.

It is evident from Figure 3 that the rotation parameter $ is the angle be-
tween the x2 axis and the major orientation axis of " abθ. The parabolic scaling
law of the aspect ratio of the area is suitable for our purposes. If we take
a piece of smooth curve with a length of about a, then the whole piece will
fit into a rectangle with the side lengths a and a1/2. In our application such
a piece of curve corresponds to an edge of the fiber, and therefore parabolic
scaling gives, in some sense, the optimal size of the localizing window in every
scale.

We can think of " abθ as a sensor that tries to detect if there is a fiber with
orientation $ in the neighborhood of b. If f now denotes a 2D image by a
ccd camera, then the inner product %f, " abθ&presents the response of sensor
" abθ. A small value of parameter a means that we ’zoom’ into a part of a
fiber, while its bigger values can embed a whole fiber. If there is no fiber with
orientation angle $ located at point b, the value of |%f, " abθ&|is very small.

Let us point our that the parabolic scaling law is the main difference
between curvelets and wave packets (or the fbi transform). The latter display
an isotropic type of scaling for essential localization, and therefore, in the
present application, the transform can depend on more than one fiber, which
eventually can make interpretation of the transform more difficult. However,
a wave-packet transform can sometimes solve problems for which curvelets
apply [14, 17], so the possibility is not excluded that it would work here also.
In a wider sense, curvelets are sometimes even classified as wave packets.

3.2. Decay of the transform

Let us define cartoon images roughly as real-valued functions f (x1, x2) of
two variables that are piecewise smooth with the smooth areas separated by
smooth curves. The function f or its derivatives may have jump discontinu-
ities along those curves.

The curvelet transform (and its variants) can approximate cartoon im-
ages with very few coefficients [8, 9, 10]. To explain this in more detail, let S
denote a part of a curve separating domains of smoothness of f . The approx-
imation property stems from the fact that |%f, " abθ&|decays very fast when
either the essential support of " abθ does not intersect S, or the orientation
angle $ differs from the tangent direction od S near the point b.

We can use the above decay property as a tool in the orientation analysis
of fibers. In this section we will present two theorems related to the decay
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rate of the curvelet transform, as a justification that this transform is a good
candidate for analyzing fiber orientation. The theorems are not expressed in
their most general forms since we focus here on a particular application.

Theorem 3.2. Assume that b$ S. If the curve S is C2-smooth with bounded
second derivative inside B (b, r) for some r > 0, and if f is C2(B (b, r) \ S)
smooth with bounded second-order derivatives, then there exists a constant
C < ( such that, for all a, b, and $,

%
%
%
%

#

R2

f (x)" abθ(x)dx

%
%
%
%'

)
Ca3/4 , $̂ < Ca1/2

C a9/4

öθ3
, $̂ # Ca1/2 (6)

holds. Here $̂ is the angle between the tangent of S at b and the major
orientation axis of " abθ.

Theorem 3.2 states that | %f, " abθ& |decays fast when the orientation of " abθ(x)
departs from that of S. This decay estimate is well-known (presented in [9]
for contourlets). For curvelets a proof can be found in [18], where the more
general Theorem 14 includes this case.

However, Theorem 3.2 concerns only discontinuities of f on S. Because
of the blurring effect explained in Section 2, it might be interesting also to
know what happens to the transform if f is a bit smoother on S. (Another
practical example is the X-ray image of a solid ball; it is continuous but
not continuously differentiable.) Some research on this problem has been
reported in [16].

Theorem 3.3. Let us assume that b $ S, & > 0, and ' > 0 . If for some
r > 0 inside the ball B (b, r), curve S is linear, f is uniformly Cα(B (b, r))
smooth and uniformly Cβ(B (b, r)) smooth in the direction of S, then there
exists a C < ( such that, for all a, b, and $,

%
%
%
%

#

R2

f (x)" abθ(x)dx

%
%
%
%'

)
Ca3/4+ α , $̂ < Ca1/2

Ca3/4
'

a
öθ

( β
, $̂ # Ca1/2

(7)

holds. Here $̂ is the angle between the tangent of S in b and the major axis
of " abθ.

The proof of Theorem 3.3 is postponed to Appendix A. It is evident that
if ' > 2& the estimate for small angles is always bigger than that for large
angles.
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The above theorems only considered the case b $ S. They would be
quite similar for b close to S. When the distance between b and S increases,
Lemma 3.1 implies that |Γf (a, b, $) | decays rapidly. With the assumptions
of Theorem 3.2, this is shown as Theorem 15 in [18].

In this article we consider only the curvelet transform, although the con-
tourlet or shearlet transforms would probably work as well since they share
most of the properties of the curvelet transform.

3.3. Estimate for the distribution of particle orientations

The theorems in the previous section already indicated that |Γf (a, b, $) |
has a large value if " abθ is oriented similarly to a fiber.

The fact that a proper sampling of parameters a, b, and $ leads to a
tight frame for L2(R2) gives us an idea how to use the values | %f, " abθ& |as a
measure for orientation strength. The tight-frame property means that, with
a proper discretization of a, b, and $,

) f ) 2
2 =

*

b

|%f, ( b&|2 +
*

a,b,θ

|%f, " abθ&|2 (8)

with some functions ( b. These functions are restricted to low frequencies and
are therefore not interesting to us in the present application. Details of ( b

and discretizations of a, b, and $ can be found in [8]. Moreover,

f =
*

b

%f, ( b&( b +
*

a,b,θ

%f, " abθ&" abθ. (9)

The definition of " abθ in [8] is a bit more complicated than the one introduced
above, but all the essential properties of " abθ are the same.

The idea of the orientation-strength estimator is the following. Equations
(8) and (9) imply that |%f, " abθ&|2 measures how important the features re-
lated to a fixed value of parameter $ are in f . Theorem 3.3 relates these
features to edges that are oriented similarly to " abθ.

Discretization of $ limits how accurately we can measure the orientation
of fibers. However, in orientation analysis we do not have to restrict ourselves
to any discretization of $, but we can argue in the following way: We can
compare the importance of orientation at $ = 0 for different rotated versions
of f (x). Nothing limits the number of rotations we can use. We note that
this kind of approach can be used in principle, in practice we still rotate "

8



instead of f since that rotation has to be done only once, but f changes in
each analysis.

If the size of the particles is known, it is natural to consider only some
fixed scales. Especially if there exist some features in bigger or smaller scales
than the particle size, whose orientation distribution we are interested in,
inclusion of too big or too small scales a in the final estimator may give rise
to artifacts in the results. In the translation parameter b there is no need
for restrictions. Finally, our estimate for the orientation distribution is then
given by

S($) :=

+
a∈I

+
b∈Ja |%f, " abθ&|2

, π

0

+
a∈I

+
b∈Ja |%f, " abθ&|2 d$

, (10)

where index set I for scales depends on the resolution and size of the particles
in the image and index set Ja depends on the implementation. We would
also like to remark that a similar formalism would apply in the framework
of continuous curvelets [15]. This ’semi-discrete’ approach was chosen here
because it is the one we used in tests made with the help of the CurveLab
Toolbox (made by Candès, Demanet and Ying) that implements a discrete
curvelet transform. In our tests we always used two subsequent scales, i.e.,
I = { C, C

"
2} with constant C that depends on the resolution. For each scale

CurveLab uses a regular rectangular grid points as the translation index set
Ja, i.e., Ja = { Rθ(C1la, C2ka1/2)% : (l, k) $ Z2} with C1 and C2 constant.

4. Comparison with other methods

So as to get reference to the new curvelet-based orientation analysis de-
veloped above we compared its results with those of previously used methods.

As the first traditional method we used a direct Fourier-analysis (fft)-
based method [1]. In this method one simply computes the average of ab-
solute values of the 2D Fourier-transform coefficients of f along radial lines.
Similarly to our curvelet-based method, low frequencies are neglected in the
analysis. The second traditional method was the so-called structure-tensor
(st) method [2, 3, 4, 5] that is one of the gradient methods developed re-
cently. st tries to find a direction $m in which the L2 norm of the directional
derivative is maximized. This method has two essential parameters: the size
of the moving window that restricts the region considered at a time, and
the thresholding value that removes the regions of weak orientation from the
analysis.

9



4.1. Results

We applied the curvelet-based method and the two traditional methods
to three different images. These images were chosen so that they were not
very sharp and were complex enough so as to be able to distinguish the
capacity of the methods to determine orientation distributions. The first im-
age ws a numerically generated network of fibers with prescribed distribution
of fiber orientations (mean 30 degrees and standard deviation 45 degrees).
This network was generated using a deposition model in which fibers, sam-
pled from specific length, diameter and orientation distributions, were let to
fall towards a flat substrate until collision with solid objects (fibers and/or
subsrate) caused their movement to cease [19]. An image of the network is
shown in Fig. 4, and the results for fiber orientation in this figure as given by
the three methods are shown in Fig. 7 together with the prescribed (known)
orientation distribution. All distributions are normalized to unit area (angles
in radians).

The second image was of newsprint paper. It was taken such that the ver-
tical direction made an angle of about 60 degrees towards the paper-machine
direction (md), which, for newsprint paper, is the dominant direction of fiber
orientation. No other prior knowledge about the orientation distribution was
available. The image, taken through an optical microscope with a ccd cam-
era, is shown in Fig. 5, and the orientation distributions determined from
this image with the three methods are shown in Fig.8.

The third image was that of organic nanofibrils taken with an atomic
force microscope (afm) (see Fig. 6). The orientation distributions of this
image, determined by the three methods, are shown in Fig. 9.
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Figure 4: An image of a numerically generated (by deposition) network of fibers.
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Figure 5: An optical transmission image of a piece of newsprint paper.
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Figure 6: An atomic-force-microscopy (afm) image of a thin film made of organic nanofib-
rils.
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(a)

(c)

(b)

(d)

Figure 7: Distribution of fiber orientation in the image of a numerically generated network
of fibers shown in (Fig. 4). (a) The known distribution in the generated network. (b)
Orientation distribution as determined by the fft method. (c) Orientation distribution as
determined by the st method. (d) Orientation distribution as determined by the curvelet
method. The original distribution is plotted using gray line also in panels (b)-(d) for
comparison.

14



Figure 8: Three estimates for the fiber-orientation distribution from the optical-
transmission image of newsprint shown in Fig. 5.
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Figure 9: Three estimates for the fiber-orientation distribution in the afm image of organic
nanofibrils shown in Fig. 6.

4.2. Discussion

Comparing the estimates for the distribution of fiber orientation as given
by the three different methods considered with the actual distribution in the
numerically generated network (an image in Fig. 7), it is evident that the
curvelet-based method gives much better results than the st and fft meth-
ods. The main problem with the st method is to find a good compromise
between the overall distribution and the position of the maximum. With
certain values of the most relevant parameters of the method, it is possible
to get the position of the maximum almost right, but then the overall distri-
bution would be much worse than one shown in Fig. 7. Notice that the st

method clearly overestimates the orientation strength. The main difficulty
with the fft method is exclusion of the base so as to get enough of varia-
tion between the maximum and minimum values of the distribution. In the
present analyses, we did not do any subtraction of the base because there
was no way to determine the exact baseline level. Also, there usually (when
the base is subtracted) are noisy fluctuations in the fft distribution curve,
which, however, can be decreased by smoothing. In contrast with this, the

16



curvelet method seems to estimate the overall distribution quite well and to
locate the maximum very accurately, even without any filtering of the image.

In Fig. 8 a similar comparison is made for an image of newsprint. When
comparing the results of the curvelet and fft methods, the former method
seems to measure a much larger variation in the orientation strength. It is
thus difficult to determine the exact angle of the orientation maximum by
the fft method without any prior information. The st method seems to
perform surprisingly badly on this image: locates, e.g., the maximum about
twenty degrees away from its assumed value, and the orientation strength
far too large for a newsprint. the reason for this is so far unclear. It might
be that some features not related to orientation of fibers may influence the
analysis of this sample. Notice that the st method is somewhat blind to the
scale of features in the image.

Comparison in Fig. 9 of the three orientation distribution estimates for
the nanofibril image is more difficult to evaluate since there is no prior knowl-
edge of the actual distribution. The appearance of two orintation maxima
in the curvelet result, and less so clearly also in the st result, is plausible by
visual inspection of the image(Fig. 6). The orientation strength is largest
in the st result, and based on the results for the numerically generated net-
work, it is expected that the st result overestimates the strength. The fft

displays hardly any features as no baseline subtraction has been made. There
is thus reason to expect that also in this case the curvelet estimate for the
orientation distribution is the best one.

5. Conclusions

A new method was introduced here for estimating the orientation dis-
tribution in images of elongated features (particles). The estimate by this
method for an image of known features was demonstrated to be very ac-
curate, and to clearly outperform those by the fft and st methods used
here to represent traditional orientation-analysis methods. There was also
strong indication that the curvelet results for images of newsprint and organic
nanofibrils were more reliable than the corresponding fft and st results.

The curvelet analysis of an image can be made very fast: we estimated
and partly demonstrated (details not reported here) that such analysis can be
implemented so that it only takes few milliseconds. This would allow on-line
analysis with about 20 micrometer resolution in a paper machine with a web
speed of 20 m/s. It is also evident based on the results reported above that
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the curvelet method is robust and rather insensitive to noise in the image.
this property strengthens its usability in practical applications.

Appendix A. Proof of Theorem 3.3

It what follows a generic constant C is used, i.e., it can change from line
to line. We also recall that " and its derivatives have rapid decay and are
C∞ smooth.

Let us first concentrate on angles $̂ # Ca1/2. If P is a polynomial function
in the direction of S, then vanishing moments of " imply that

%
%
%
%

#

R2

f (x)" abθ(x)dx

%
%
%
%=

%
%
%
%

#

R2

(f (x) ! P(x))" abθ(x)dx

%
%
%
%.

Moreover, because the rapid decay of " , for all N > 0 there exists a constant
CN such that

%
%
%
%

#

R2\B(b,r/2)
(f (x) ! P(x))" abθ(x)dx

%
%
%
%' CNaN .

Therefore we have to find a bound only for the integral
%
%
%
%

#

B(b,r/2)
(f (x) ! P(x))" abθ(x)dx

%
%
%
%,

i.e., from now on we assume that x $ B (b, r/ 2).
Let L y be a line that is aligned with S and y be the intersection point of

L y and the major axis of " abθ. It is then possible to define a P(x) so that
slice of P along L y is always polynomial and there exists a constant C such
that

|f (x) ! P(x)| ' C |x ! y|β

for all x $ L y * B (b, r/ 2). In particular, constant C is independent of y.
This is a direct consequence from definition of Hölder regularity and the
assumption that, in the direction of S, function f is Cβ(B (b, r/ 2)) smooth.

For simplicity, we first consider the integral over a small rectangle R
(instead of B (b, r/ 2)) centered in b, oriented like " abθ and having side lengths
of a and a1/2. First we notice that if x $ L y * R, then

|x ! y| ' a/ sin $̂ ' Ca/ $̂.
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Therefore there exists a C < ( such that
%
%
%
%

#

R

(f (x) ! P(x))" abθ(x)dx

%
%
%
%

'
#

R

|f (x) ! P(x)| |" abθ(x)| dx

' Ca3/2
'

a/ $̂
( β

a−3/4

=Ca3/4
'

a/ $̂
( β

.

Now we take a minimal collection of rectangles Ri, with similar size and
orientation as R, but differently centered, such that Ri * Rj = + for i ,= j and
B (b, r/ 2) - . iRi - B (b, r). Similarly to the estimate above of the integral
over R, using the decay Lemma 3.1, we find that

%
%
%
%

#

Ri

(f (x) ! P(x))" abθ(x)dx

%
%
%
%' Ca3/2

'
a/ $̂

( β a−3/4

1 +
%
%D1/aR−θ(ci ! b)

%
%2N ,

where ci $ R2 is the center of Ri. Using this result we finally find that
%
%
%
%

#

B(b,r/2)
(f (x) ! P(x))" abθ(x)dx

%
%
%
%

' C
*

i

a3/2
'

a/ $̂
( β a−3/4

1 +
%
%D1/aR−θ(ci ! b)

%
%2N

' Ca3/4
'

a/ $̂
( β

.

Now we can investigate what happens for angles $̂ ' Ca1/2. Instead of
considering slices in the direction of S, we consider slices in the direction
perpendicular to the major orientation axis of " abθ, i.e., in the direction of
vector Rθ(1, 0)%. In this direction (like in any other direction) f is always
Cα and, if x $ L y * R, then |x ! y| ' a. The rest of the calculations are
exactly the same as in the case $̂ # Ca1/2.

References

[1] T. Enomae, Y.-H. Han, A. Isogai, Nondestructive determination of fiber
orientation distribution of paper surface by image analysis, Nordic Pulp
and Paper Research Journal 21 (2) (2006) 253–259.

19



[2] T. Brox, R. van den Boomgaard, F. Lauze, J. van de Weijer, J. Weickert,
P. Mrzek, P. Kornprobst, Adaptive structure tensors and their applica-
tions, in: J. Weickert, H. Hagen (Eds.), Visualization and Processing of
Tensor Fields, Springer-Verlag, Berlin, pp. 17–47, 2006.

[3] R. van den Boomgaard, J. van de Weijer, Robust estimation of orien-
tation for texture analysis, The 2nd international workshop on texture
analysis and synthesis, in conjuncture with ECCV, Copenhagen, 2002.

[4] S. K. Nath, K. Palaniappan, Adaptive robust structure tensors for ori-
entation estimation and image segmentation, Lect. Notes Comput. Sci.
3804 (2005) 445–453.

[5] M. Krause, J. M. Hausherr, B. Burgeth, C. Herrmann, W. Krenkel,
Determination of the fibre orientation in composites using the structure
tensor and local x-ray transform, J. Mater. Sci. (45) (2010) 888–896.

[6] I. Daubechies, Ten lectures on wavelets, Society for Industrial and Ap-
plied Mathematics (SIAM), Philadelphia, PA, 1992.

[7] E. J. Candès, D. L. Donoho, Recovering edges in ill-posed inverse prob-
lems: Optimality of curvelet frames, Ann. Stat. 30 (3) (2002) 784–842.

[8] E. J. Candès, D. L. Donoho, New tight frames of curvelets and opti-
mal representations of objects with piecewise C2 singularities, Commun.
Pure Appl. Math. 57 (2) (2004) 219–266.

[9] M. N. Do, M. Vetterli, The contourlet transform: An efficient direc-
tional multiresolution image representation, IEEE Trans. Image Process.
14 (12) (2005) 2091–2106.

[10] K. Guo, D. Labate, Optimally sparse multidimensional representation
using shearlets., SIAM J. Math. Anal. 39 (1) (2007) 298–318.

[11] O. Wirjadi, K. Schladitz, A. Rack, T. Breuel, Applications of anisotropic
image filters for computing 2D- and 3D-fiber orientations, in: V. Ca-
passo, et al. (Eds.), Stereology and Image Analysis. Ecs10 - Proceedings
of the 10th European Congress of ISS, The MIRIAM Project Series,
volume 4, pp. 107–112, 2009

20



[12] K. Niskanen, Paper Physics, Papermaking Science and Technology,
Vol. 16, Fapet, Jyväskylä, 1998.
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