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Reconstructing conductivities
with boundary corrected D-bar method

Samuli Siltanen and Janne P. Tamminen

Abstract. The aim of electrical impedance tomography is to form an image of the con-
ductivity distribution inside an unknown body using electric boundary measurements.
The computation of the image from measurement data is a non-linear ill-posed inverse
problem and calls for a special regularized algorithm. One such algorithm, the so-called
D-bar method, is improved in this work by introducing new computational steps that re-
move the so far necessary requirement that the conductivity should be constant near the
boundary. The numerical experiments presented suggest two conclusions. First, for most
conductivities arising in medical imaging, it seems the previous approach of using a best
possible constant near the boundary is sufficient. Second, for conductivities that have high
contrast features at the boundary, the new approach produces reconstructions with smaller
quantitative error and with better visual quality.

Keywords. Inverse problem, ill-posed problem, electrical impedance tomography,
inverse conductivity problem.
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1 Introduction

The aim of electrical impedance tomography (EIT) is to form an image of the
conductivity distribution inside an unknown body using electric boundary mea-
surements. Applications of EIT include medical imaging, nondestructive testing
and subsurface monitoring. See [16] for an overview of EIT. The computation of
the image from measurement data is a non-linear ill-posed inverse problem and
calls for a special regularized algorithm. In this work we improve one such algo-
rithm, the so-called D-bar method, by removing the so far necessary requirement
that the conductivity should be constant near the boundary.

The mathematical model behind EIT is the inverse conductivity problem intro-
duced by Calderón in [14]. We discuss here the inverse conductivity problem in
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2 S. Siltanen and J. P. Tamminen

the following two-dimensional form: let �1 D D.0; r1/ � R2 be the disc with
center at origin and radius r1 > 0 and consider a strictly positive, real-valued con-
ductivity � 2 C 2.�1/. Maintaining a voltage distribution f on the boundary @�1
creates a voltage potential u that solves the following Dirichlet problem:´

r � .�ru/ D 0 in �1;

u D f on @�1:
(1.1)

The resulting distribution of current through the boundary is

ƒ�f D �
@u

@�

ˇ̌̌
@�1

; (1.2)

where � is the outward unit normal and ƒ� is the Dirichlet-to-Neumann (DN)
map. Calderón’s problem is to reconstruct � from the knowledge of ƒ� .

Many numerical methods have been suggested in the literature for the recon-
struction of � in the above setting. In this work we concentrate on the so-called
D-bar method. Other approaches include linearization [5, 8, 17], iterative regular-
ization [20,21,27,38], statistical inversion [26,49], resistor network methods [11],
convexification [51], layer stripping [53, 54], Teichmüller space methods [35–37].
Also, there is a large body of work concentrating on recovering partial information
on � , see [9, 10] for a survey.

The D-bar method considered in this paper is the implementation of Nachman’s
constructive proof [43] for recovering � 2 W 2;p.�1/ from ƒ� for p > 1. That
result builds on the previous work of Sylvester and Uhlmann 1987 [55] and
Nachman 1988 [42] in dimensions n � 3 and on the work of Novikov 1988 [45] in
dimensions n � 2. Nachman’s result was later sharpened by Brown and Uhlmann
in [13] to cover W 1;q.�1/ conductivities with q > 2; the proof was augmented
with constructive steps by Knudsen and Tamasan in [34]. Finally, Astala and
Päivärinta answered Calderón’s question in its original form by describing a con-
structive procedure for recovering � 2 L1.�1/ in [3, 4]; numerical implementa-
tion of this approach is described in [1, 2]. Thus there are several variants of the
D-bar method for two-dimensional EIT. In dimension three the theory in a more
general setting of inverse scattering is developed in [45–48] and specifically the
theory of three-dimensional D-bar for EIT in [7, 19, 42, 55].

The above theoretical results on the D-bar method assume the knowledge of
the infinite-precision data ƒ� . However, the starting point of practical inversion is
a finite-dimensional and noisy approximation L"� toƒ� . Since the EIT problem is
severely ill-posed, or sensitive to measurement noise, any practical reconstruction
method needs to be robust against errors in measurement data. The first robust
D-bar algorithm (based on [43]) was given in [52], and it has been refined and
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Reconstructing conductivities with boundary corrected D-bar method 3

analyzed in [30, 31, 33, 39]. The method has been successfully tested on a chest
phantom in [24] and on in vivo human chest data in [25]. Numerical D-bar method
based on [13, 34] was reported in [29]. The above methods are two-dimensional;
three-dimensional computations are described in [6, 12]. Robustness is ensured in
all of these practical D-bar reconstruction methods by truncating scattering data,
a step that can be viewed as nonlinear low-pass filtering.

In addition to being robust against noise, a reliable EIT algorithm needs a reg-
ularization analysis. Such an analysis is provided for the two-dimensional D-bar
method in [32], where an explicit formula is given for choosing the truncation
radius as function of noise level.

Practical D-bar methods have been until now implemented by fitting an optimal
constant to the possibly nonconstant trace � j@�1 . Quite good results have been
obtained both with laboratory data [24] and in vivo patient data [25]. However,
in applications exhibiting large conductivity changes near or at the boundary the
constant-fitting approach may not be good enough. Our aim here is to remove the
assumption “� � 1 near the boundary” from the two-dimensional D-bar algorithm
based on [43] using an additional procedure we call boundary correction.

Let us review the infinite-precision boundary correction procedure given in [43].
The starting point is the DN map ƒ� of a conductivity � 2 W 2;p.�1/. Take
r2 > r1 and set �2 D D.0; r2/. The conductivity � is extended outside �1 by

.x/ D

´
�.x/; when x 2 �1;
Q�.x/; when x 2 �2 n�1;

(1.3)

where we can choose any Q� 2 W 2;p.�2 n�1/with the properties Q� j@�1 D � j@�1
and .@�=@�/j@�1 D .@ Q�=@�/j@�1 and Q� � 1 near @�2. This way  2 W 2;p.�2/

whenever � 2 W 2;p.�1/. Define two Dirichlet problems:8̂̂<̂
:̂
r � . Q�ruj / D 0 in �2 n�1; j D 1; 2;

uj D fj on @�j ;

uj D 0 on @�i ; i D 1; 2; i ¤ j:

(1.4)

Four new DN maps in �2 n�1 can be defined by

ƒijfj D Q�
@uj

@�

ˇ̌̌
@�i

; i; j D 1; 2: (1.5)

By [43, Proposition 6.1] we can use (1.5) to write ƒ in terms of ƒ� :

ƒ D ƒ
22
Cƒ21.ƒ� �ƒ

11/�1ƒ12: (1.6)
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4 S. Siltanen and J. P. Tamminen

The boundary corrected D-bar method for � 2 W 2;p.�1/, assuming infinite-pre-
cision data, is described as follows in [43, Section 6]:

(a) Reconstruction at the boundary. Recover the trace � j@�1 and the normal
derivative .@�=@�/j@�1 from ƒ� .

(b) Extension of conductivity. Using (a) and (1.3), extend the conductivity to
 2 W 2;p.�2/ such that  � 1 near @�2 and infx2�2 .x/ � c > 0.

(c) Calculation of outer DN map. Write the DN map ƒ of  2 W 2;p.�2/ in
terms of ƒ� using (1.6).

(d) Reconstruction using the D-bar method. Reconstruct  2 W 2;p.�2/ from
the infinite-precision data ƒ following [43].

The practical starting point of reconstruction is the noisy approximate data L"� ,
and the Steps (a)–(d) above cannot be directly followed. We suggest the following
robust procedure for boundary correction:

(a0) Approximate reconstruction at the boundary. Recover numerically a
smooth function g 2 C1.@�1/ with the property g � � j@�1 as explained
in [44]. Omit recovering .@�=@�/j@�1 since it is an unstable step [44].

(b0) Simple extension of conductivity. Construct Q� 2 C 2.�2 n�1/ satisfying
infx2�2n�1 Q�.x/ � c > 0 and Q� j@�1 D g and Q� � 1 near @�2. Use Q� in (1.3)
to extend the conductivity to  2 L1.�2/.

(c0) Approximate calculation of outer DN map. Write approximate DN mapL
in terms of L� using a matrix approximation to (1.6).

(d0) Reconstruction using regularized D-bar method. Reconstruct  from L
using the regularized D-bar method described in [32].

The main concern about the procedure (a0)–(d0) is that the extension of � to 
will be in general discontinuous at @�1, and thus  violates the assumptions of
the D-bar method used in (d0). However, there is both theoretical and experimental
evidence suggesting that the step (d0) should give reasonable results even in this
case [24,25,30,31]. Another potential problem arises from the inverse operator in
formula (1.6), as the proof of invertibility [43, Proposition 6.1] in the extended con-
ductivity produced by step (b0). One possibility would be to use [28, Lemma 2.1.3.]
instead of (1.6) as the basis of step (b0). However, in our computational experi-
ments the use of (1.6) seems not to be a problem even in the case of discontinuous
conductivity extensions.

This paper should be viewed as a report of computational experiments suggest-
ing the practical usefulness of the boundary correction step in applications where
the conductivity varies strongly near the boundary. Hopefully the computational

Authenticated | samuli.siltanen@helsinki.fi author's copy
Download Date | 2/18/14 7:34 AM



Reconstructing conductivities with boundary corrected D-bar method 5

results presented below will act as motivation for further theoretical study of prac-
tical imaging algorithms for EIT.

We remark that the boundary correction method is applied in this paper only in
the case of �1 being a disc. This is not a serious lack of generality, though: we
presume that other domains than discs could be treated combining the methods
described in [40, 41] with the boundary correction.

This paper is organized as follows. We present our method of simulating con-
tinuum model EIT data in Section 2. The details of implementation of Steps (a0),
(b0) and (c0) are discussed in Sections 3, 4 and 5, respectively. A brief outline of the
regularized D-bar method is given in Section 6. Our practical boundary correction
method is illustrated by numerical examples in Section 7, and we conclude our
results in Section 8.

2 Simulation of measurement data

Let R� W eH�1=2.@�1/! eH 1=2.@�1/ denote the Neumann-to-Dirichlet (ND)
map of � , where eH s spaces consist of H s functions with mean value zero. We
have

R�g D uj@�1 ;

where u is the unique H 1.�1/ solution of the Neumann problem8<:
r � �ru D 0 in �1;


@u

@�
D g on @�1;

satisfying Z
@�1

uds D 0:

We note two key equalities concerning ƒ� and R� . Define a projection operator

P� ´ j@�1j
�1

Z
@�1

�:

Then for any f 2 H 1=2.@�1/ we have

Pƒ�f D j@�1j
�1

Z
@�1

�
@u

@�
D

Z
�1

r � �ru D 0;

so actuallyƒ� WH 1=2.@�1/! eH�1=2.@�1/. From the definitions ofƒ� and R�

we now have

ƒ�R� D I W eH�1=2.@�1/! eH�1=2.@�1/; (2.1)

R�ƒ� D I � P W H
1=2.@�1/! eH 1=2.@�1/: (2.2)
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6 S. Siltanen and J. P. Tamminen

Given � and N > 0, we define a matrix R� W C2N ! C2N as follows. We use
a truncated orthonormal trigonometric basis for representing functions defined at
the boundary @�j :

�
.n/
j .�/ D

1p
2�rj

ein� ; n D �N; : : : ; N; j D 1; 2: (2.3)

Note that
R
@�j

�
.n/
j ds D 0 for n ¤ 0. Then solve the Neumann problem8̂<̂

:
r � �ru

.n/
1 D 0 in �1;

�
@u
.n/
1

@�
D �

.n/
1 on @�1;

(2.4)

with the constraint Z
@�1

u
.n/
1 ds D 0:

Define R� D Œbu.`; n/� by

bu.`; n/ D Z
@�1

u
.n/
1 �

.`/
1 ds: (2.5)

Here ` is the row index and n is the column index.
The matrix R� represents the operator R� approximately. We add simulated

measurement noise by defining

R"� ´ R� C cE; (2.6)

where E is a (2N � 2N ) matrix with random entries independently distributed
according to the Gaussian normal density N .0; 1/. The constant c > 0 is adjusted
so that kR"1 �R1k=kR1k, where k � k is the standard matrix norm and R1 is the
ND map for the unit conductivity, is greater than the relative error caused by FEM
and of the same order of magnitude as 0.0017 % (signal to noise -ratio of 95.5 dB),
the noise level of the ACT3 impedance tomography imager of Rensselaer Poly-
technic Institute [18].

We can now easily compute the corresponding noisy matrix representation L"�
for the DN map ƒ� . Namely, definefL"� ´ .R"� /

�1
I

then fL"� is a matrix of size 2N � 2N . We should add appropriate mapping prop-
erties for constant basis functions at the boundary according to the facts

ƒ�1 D 0;

Z
@�1

ƒ�fds D 0:
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Reconstructing conductivities with boundary corrected D-bar method 7

This is achieved simply by setting (in Matlab notation)

L"� ´

26666664

fL"� .1WN; 1WN/ 0 fL"� .1WN; .NC1/Wend/

0 0 0

fL"� ..NC1/Wend; 1WN/ 0 fL"� ..NC1/Wend; .NC1/Wend/

37777775 ; (2.7)

where the zero block matrices above have various (but obvious) sizes.

3 Approximate reconstruction at the boundary

The trace � j@�1 can be approximately reconstructed in the following way [44].
Define

hM;ˇ .�/ D e
iM��.� � ˇ/;

where

�.�/ D

´
d.�� � �

2
/˛.�� C �

2
/˛ cos.��/; for � �

2�
< � < �

2�
;

0; otherwise;
(3.1)

is a non-negative cut-off function satisfyingZ
@�1

�2.�/d� D 1:

Now the mollified trace .��2/j@�1.ˇ/ can be calculated withZ
@�1

��2ds D lim
M!1

1

M

Z
@�1

hM;ˇƒ�hM;ˇds: (3.2)

We get the approximation g � � j@�1 by calculating (3.2) with different angles ˇ
and using a finite M on the right side of (3.2).

Another approach to reconstructing � j@�1 is the layer stripping method intro-
duced in [53].

4 Simple extension of conductivity

The starting point here is a given approximation g W @�1 ! R to the trace � j@�1
of the conductivity � 2 C 2.�1/ of interest. The aim is to construct a strictly pos-
itive conductivity Q� W �2 n�1 satisfying Q� j@�1 D g and Q� � 1 near the outer
boundary @�2, and then use formula (1.3) to define  .
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8 S. Siltanen and J. P. Tamminen

We extend � to  using the following extension in polar coordinates:

.�; �/ D

8̂<̂
:
�.�; �/; � � r1;

.g.�/ � 1/fm.�/C 1; r1 < � � re;

1; re < � � r2;

(4.1)

where r1 < re < r2 is some radius and fm.�/ � 0 is a suitable third-degree poly-
nomial satisfying fm.r1/ D 1 and fm.re/ D 0. Note that  is twice continuously
differentiable apart from possible discontinuity at � D r1, and equals constant 1 in
the annulus re < � < r2.

5 Approximate calculation of outer DN map

Using the functions (2.3), a given function f W @�i ! C can be approximately
represented by the vector

Ef D Œ Of .�N/; Of .�N C 1/; : : : ; Of .N � 1/; Of .N /�T ; Of .n/ D

Z
@�i

f �
.n/
i ds;

and the DN mapsƒij can be approximated by the matrices Lij D Œbgij .`; n/� with

bgij .`; n/ D Z
@�j

Q�
@u
.n/
j

@�

ˇ̌̌
@�i

�
.`/
j dS; (5.1)

where u.n/j denotes the solution to (1.4) with u.n/j j@�j D �
.n/
j . Again ` is the row

index and n is the column index. Now the matrix L" can be calculated by

L" D L
22
C L21.L"� � L

11/�1L12; (5.2)

provided that the matrix L"� � L
11 is invertible. Formula (5.2) is a finite-dimen-

sional approximation to (1.6).

6 Regularized D-bar method

In this section we explain how to reconstruct a conductivity  in a regularized
way from a noisy measurement matrix L" under the assumptions  2 C 2.�2/
and  � 1 in a neighborhood of @�2.

If we had the infinite-precision data ƒ at our disposal, we could follow the
reconstruction procedure in [43]. First we would solve the boundary integral equa-
tion

 . � ; k/j@�2 D e
ikx
� Sk.ƒ �ƒ1/ . � ; k/j@�2 ; (6.1)
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Reconstructing conductivities with boundary corrected D-bar method 9

in the Sobolev space H 1=2.@�2/ for all k 2 C n ¹0º. In formula (6.1), Sk is
a single-layer operator

.Sk�/.x/´

Z
@�2

Gk.x � y/�.y/ds;

where Gk is Faddeev’s Green function, first introduced by L. D. Faddeev in [22],
defined by

Gk.x/´ eikxgk.x/; gk.x/´
1

.2�/2

Z
R2

eix��

j�j2 C 2k.�1 C i�2/
d�:

Once equation (6.1) had been solved, we would substitute the result into

t.k/ D
Z
@�2

ei
Nk Nx.ƒ �ƒ1/ . � ; k/ds; (6.2)

where t is called the scattering transform, and ƒ1 is the DN map for the unit
conductivity. Note that equation (6.1) and formula (6.2) are particular cases of
formulas and equations first introduced by R. G. Novikov in [45]. For each fixed
point x 2 �, we would solve the following integral formulation of the D-bar equa-
tion:

�.x; k/ D 1C
1

.2�/2

Z
R2

t.k0/
.k � k0/ Nk0

ei.k
0xCk0x/�.x; k0/dk01dk

0
2: (6.3)

Then the conductivity would be perfectly reconstructed as .x/ D �.x; 0/2.
However, since our starting point in practice is the matrix L" , we need to regu-

larize the above ideal approach as explained in [32]. The matrices L" and L1 we
already have, and a matrix representation Sk for the single-layer operator Sk can be
computed numerically, provided we have numerical evaluation routines for gk.x/,
see [23]. We expand eikxj@�2 as a vector Eg in our finite trigonometric basis (2.3)
and set

E k ´ ŒI C Sk.L" � L1/�
�1
Eg (6.4)

for k ranging in a fine grid inside the disc jkj < R, where the truncation radius
R > 0 is ideally chosen according to the size of noise. The choice ofR falls outside
the scope of this paper, so we will compute below reconstructions with R ranging
in an interval. We define the truncated scattering transform by

tR.k/ D

´R
@�2

ei
Nk NxF �1..L" � L1/

E k/.x/ds; for jkj < R;
0; otherwise;

(6.5)

where F �1 denotes transforming from the Fourier series domain to the function
domain. Finally we use the numerical algorithm in [33] to solve equation (6.3) with
t replaced by tR and denote the solution by �R.x; k/. Then .x/ � �R.x; 0/2.
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10 S. Siltanen and J. P. Tamminen

7 Numerical results

We define several conductivity distributions � 2 L1 on the unit disc

�1 D D.0; r1/ D D.0; 1/

and compare reconstructions computed with and without the boundary correction
procedure.

Before proceeding with the examples, though, we need to choose an optimal
radius r2 to be used in the boundary correction step. We do this by examining nu-
merically the simple case of the unit conductivity � � 1 and using the procedure
(a0-c0) explained in the introduction. The numerical parameters used in this proce-
dure are the same as in the example reconstructions, and they are given later in this
chapter.

We take N D 16 and simulate non-noisy ND map R1 using the finite element
method with 1,048,576 triangles in �1 as explained in Section 2. Using the stan-
dard square norm for matrices, this yields

"fem D
kRth

1 �R1k

kRth
1 k

D 0:0000173;

where Rth
1 is the analytically calculated ND matrix for the unit conductivity. Fur-

thermore, we construct noisy ND map R"1 with formula (2.6) and c D 0:00001,
giving

kR"1 �R1k

kR1k
D 0:0001 > "fem:

To avoid notational clashes, we denote by

� L"D1 the DN map on @�2 computed from noisy ND map using formula (5.2),

� LD1 the DN map computed from non-noisy ND map using formula (5.2),

� L2D1 the DN map computed directly on @�2,

where by  D 1 we mean the conductivity � D 1 extended by (4.1). The left plot
in Figure 1 shows the behavior of the error kL"D1 � L

2
D1k=kL

2
D1k as function

of r2. The condition number of the matrix L"�D1�L
11 ranges between 1 and 20.

It seems that we should choose r2 � 1:2. Further, the right plot in Figure 1 shows
the behavior of the error kL"D1 � LD1k=kLD1k as function of r2. The error
decreases as r2 grows; it shows how the data measured on @�1 contributes less and
less to L"D1 as r2 gets larger. This is in agreement with the known fact that in EIT
it is more difficult to obtain information from the deeper parts of the object [15].
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Figure 1. Top figure: relative error kL"D1 � L
2
D1k=kL

2
D1k as a function of r2.

Here L"D1 is the DN map on @�2 computed from noisy ND map using for-
mula (5.2) and L2D1 is the DN map calculated directly on @�2. Here k � k denotes
the standard square norm for matrices. By  D 1 we mean � D 1 extended by (4.1).
Bottom figure: relative error kL"D1 � LD1k=kLD1k as a function of r2. Here
LD1 is the DN map computed from non-noisy ND map using formula (5.2).
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12 S. Siltanen and J. P. Tamminen

Based on the above numerical investigation we choose r2 D 1:2 for the rest of
this paper. We work with the following four example conductivities:

� Example 1: conductivity has a high contrast bump right on the boundary @�1
and a circular inclusion near the boundary. All deviations from background
conductivity 1 satisfy �.x/ > 1.

� Example 2: similar to Example 1 but with a larger inclusion having higher
conductivity.

� Example 3: conductivity has high-contrast behavior near @�1, but the maxi-
mum of the deviation from background is not right at the boundary.

� Example 4: crude model of a cross-section of an industrial pipeline, similar to
the case in [50]. There is a sediment layer on the bottom of the tube, and two
round low-conductivity inclusions.

See Figure 2 for plots of the example conductivities and their traces on @�1.
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Example 2
� over boundary
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Figure 2 (to be continued on next page)
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� over boundary
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Figure 2. Left column: Example conductivities  shown in the extended domain�2,
the white circle indicates the inner boundary @�1. Right column: actual traces of the
conductivities at the inner boundary @�1 (solid line), and approximate traces at @�1
(dashed line) whose reconstruction is explained in Section 3.

We simulate noisy EIT data for each example conductivity using c D 0:00001.
The error kR"� �R�k=kR�k ranges between 0.00011 and 0.00076.

We use the method of Section 3 with M D 32; � D 6; ˛ D 4 and 100 differ-
ent angles to compute approximately reconstructed traces g on @�1. See the right
column of Figure 2 for the result. Then, we compute the extended conductiv-
ity  in the disc �2 D D.0; r2/ D D.0; 1:2/ using (4.1) and (1.3) with the radius
re D r1C7=8.r2�r1/ D 1:175. Since g is only approximately the same as � j@�1 ,
there are discontinuities in  in all cases.

We compute the intermediate DN mapsƒij using the finite element method and
425,984 triangles in the annulus �2 n�1. To check the accuracy of formula (5.2)
we also calculate ƒ directly by the finite element method (and 1,081,344 trian-
gles in �2) using the knowledge of  . The error kL" � L

2
k=kL

2
k, where L2 is
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14 S. Siltanen and J. P. Tamminen

the DN map calculated directly on the boundary @�2, was less than 2.2 % in all
cases. The condition number of the matrixL"� � L

11 used in (5.2) was less than 27
in all test cases.

Figure 3 illustrates how the noise and the boundary correction procedure affect
the scattering transform in Example 4. The first row shows the real and imaginary
parts of (6.5) substituting L� in place of L"

� . The second row shows the same
functions using L"� , and the third row is again the same, but uses L" calculated
from (5.2). The real part of tR.k/ is in the left column, the imaginary part on the
right. The scattering transform is calculated in a grid of spectral parameters k,
where jkj < 10. In white areas we have jtR.k/j > 15, meaning the calculation has
failed or is close to failing due to computational error caused by large values of jkj.

 

 

−10

−5

0

5

10

<.t.k// =.t.k//

non-noisy

noisy

noisy and
corrected

Figure 3. The scattering transform in Example 4. The first row shows the real and
imaginary parts of (6.5) substituting L� in place of L"

� . The second row shows the
same functions usingL"� , and the third row is again the same, but usesL" calculated
from (5.2). The real part of tR.k/ is in the left column, the imaginary part on the
right. The scattering transform is calculated in a grid of spectral parameters k, where
jkj < 10. In white areas we have jtR.k/j > 15, meaning the calculation has failed
or is close to failing due to computational error caused by large values of jkj.
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Reconstructing conductivities with boundary corrected D-bar method 15

For all truncation radii R D 3:0; 3:2; : : : ; 5:8; 6:0, as explained in Section 6,
a reconstruction is calculated with and without the boundary correction procedure
using the same reconstruction points. The conductivities and their extensions are
pictured in Figure 2. Full error graph showing L2 -error for every reconstruction is
pictured in Figure 4. Reconstructions and the corresponding errors are pictured in
Figures 5, 6, 7 and 8. The first reconstruction pair is always calculated withR D 3,
the second one is the one with the lowest numerical L2-error for the boundary
corrected reconstruction, and the third one is with R D 6 to show how the recon-
structions fail.
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15
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%
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%
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Example 1 Example 2

Example 3 Example 4

Figure 4.L2-error graphs as a function of truncation radiusR of the scattering trans-
form for different examples; solid line is for the traditional D-bar reconstructions,
dashed line is for boundary corrected reconstructions. The R-axis is the same in all
four plots.
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Example 1
Original conductivity

R D 3:0 R D 5:0 R D 6:0

Uncorrected Uncorrected Uncorrected

30% 25% 37%

R D 3:0 R D 5:0 R D 6:0

Corrected Corrected Corrected

26% 18% 49%

Figure 5. Example 1 reconstructions; the original conductivity in the first row, tradi-
tional D-bar reconstructions in the second row and boundary corrected reconstruc-
tions in the third row; the numbers beside the pictures areL2-errors, for the full error
graph, see Figure 4. The first reconstruction pair is always calculated with R D 3,
the second one is the one with the lowest numerical L2-error for the boundary cor-
rected reconstruction, and the third one is with R D 6 to show how the reconstruc-
tions fail.
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Reconstructing conductivities with boundary corrected D-bar method 17

Example 2
Original conductivity

R D 3:0 R D 5:4 R D 6:0

Uncorrected Uncorrected Uncorrected

42% 29% 35%

R D 3:0 R D 5:4 R D 6:0

Corrected Corrected Corrected

35% 15% 39%

Figure 6. Example 2 reconstructions; the original conductivity in the first row, tradi-
tional D-bar reconstructions in the second row and boundary corrected reconstruc-
tions in the third row; the numbers beside the pictures areL2-errors, for the full error
graph, see Figure 4. The first reconstruction pair is always calculated with R D 3,
the second one is the one with the lowest numerical L2-error for the boundary cor-
rected reconstruction, and the third one is with R D 6 to show how the reconstruc-
tions fail.
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Example 3
Original conductivity

R D 3:0 R D 5:0 R D 6:0

Uncorrected Uncorrected Uncorrected

66% 60% 67%

R D 3:0 R D 5:0 R D 6:0

Corrected Corrected Corrected

59% 39% 75%

Figure 7. Example 3 reconstructions; the original conductivity in the first row, tradi-
tional D-bar reconstructions in the second row and boundary corrected reconstruc-
tions in the third row; the numbers beside the pictures areL2-errors, for the full error
graph, see Figure 4. The first reconstruction pair is always calculated with R D 3,
the second one is the one with the lowest numerical L2-error for the boundary cor-
rected reconstruction, and the third one is with R D 6 to show how the reconstruc-
tions fail.
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Reconstructing conductivities with boundary corrected D-bar method 19

Example 4
Original conductivity

R D 3:0 R D 4:8 R D 6:0

Uncorrected Uncorrected Uncorrected

25% 22% 49%

R D 3:0 R D 4:8 R D 6:0

Corrected Corrected Corrected

25% 21% 63%

Figure 8. Example 4 reconstructions; the original conductivity in the first row, tra-
ditional D-bar reconstructions in the second row row and boundary corrected recon-
structions in the third row; the numbers beside the pictures are L2-errors, for the full
error graph, see Figure 4. The first reconstruction pair is always calculated with
R D 3, the second one is the one with the lowest numerical L2-error for the bound-
ary corrected reconstruction, and the third one is with R D 6 to show how the re-
constructions fail.
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8 Conclusion

Our aim in this work is to find examples of simulated conductivities that (i) share
features of conductivities appearing in applications of electrical impedance tomog-
raphy, and (ii) allow higher-quality reconstruction when boundary correction step
is added to the D-bar method. After experimenting with a large number of candi-
date conductivities we concluded that for conductivities which behave moderately
at and near @�1, the method of approximating the trace of conductivity by an
optimal constant is good enough. More precisely, the errors caused by measure-
ment noise in Steps (a0) and (c0) prevented the boundary correction procedure from
enhancing the reconstructions.

However, we were able to find several examples where the boundary corrected
D-bar method does provide better imaging quality than the non-corrected method
both in terms of quantitative error and visual inspection. Four such examples are
presented in Section 7, and all of them have high contrast features in the conduc-
tivity right at the boundary. Consequently, most medical applications do not need
the boundary correction procedure, but it may be beneficial or even necessary for
some nondestructive testing, industrial process monitoring or geophysical sensing
applications.
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